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The skin offers an ideally suited, clinically relevant model

for studying the crossroads between peripheral and

systemic responses to stress. A ‘brain–skin connection’

with local neuroimmunoendocrine circuitry underlies the

pathogenesis of allergic and inflammatory skin diseases,

triggered or aggravated by stress. In stressed mice,

corticotropin-releasing hormone, nerve growth factor,

neurotensin, substance P and mast cells are recruited

hierarchically to induce neurogenic skin inflammation,

which inhibits hair growth. The hair follicle is both a

target and a source for immunomodulatory stress

mediators, and has an equivalent of the hypothalamus–

pituitary–adrenal axis. Thus, the skin and its appendages

enable the study of complex neuroimmunoendocrine

responses that peripheral tissues launch upon stress

exposure, as a basis for identifying new targets for

therapeutic stress intervention.

Principles of neuroimmunological and neuroendocrine

responses to psychological stress

A central paradigm in stress research is that the
endocrine, immune and nervous ‘super-systems’ engage
in multiple interactions during the response of the body to
acute and chronic stress. Each system is also individually
vulnerable and responds to defined stressors [1] (Figure 1).
This network shares respective ligands and/or their
cognate receptors [2]. Whether or not a healthy balance
of protective or damaging effects of stress responses is
achieved is influenced by the newly developed stress
concept of allostasis [3]. In this concept, allostasis is
defined as the adaptation of the nervous, endocrine and
immune systems to maintain stability through change
(triggered, for example, by unpredictable events, such as
conflict in social hierarchies and competition for resources,
or predictable events, such as seasonal changes). An
inefficiently managed adaptation is referred to as allo-
static overload [3].

In response to stress, neurohormones, neurotransmit-
ters, neuropeptides and neurotrophins stimulate a series
of adaptation responses (Figure 1 and Table 1). These
typically include behavioral, cardiovascular, metabolic,
endocrine and immunological changes [4–12];
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the immunological changes range from immunosuppres-
sion to inflammation [6,12,13] (Figure 1 and Table 1).
These divergent and, at times, seemingly contradictory
effects reflect the dual and multifunctional role of the
immune system as both a sensory and an effector organ in
the stress response.

The immune system also regulates the central nervous
system (CNS). Cytokines and other inflammatory
mediators can signal the brain, thus, influencing behavior
and other complex body reactions (Figure 2). For
example, mast-cell histamine increases the expression
of corticotropin-releasing hormone (CRH) mRNA in
the hypothalamus, which activates the hypothalamic
pituitary-adrenal (HPA) axis [14]. Moreover, CRH
secretion could be triggered by IL-6 and IL-1 [15], both of
which are also released from mast cells; conversely, CRH
stimulates IL-6 release [16]. Proinflammatory cytokines
(e.g. via activation of innate immunity in response to
infections) can induce sickness behavior and depressive
symptoms and might aggravate stress perception [17].

Several diseases have long been recognized to be
triggered or aggravated by psychological stress, such
as inflammatory bowel disease [18], migraines [19],
experimental allergic encephalomyelitis [20] and multiple
sclerosis [21]. Also, stress perception during pregnancy
can trigger pregnancy complications [22,23].

A growing list of stress mediators has been defined
in recent years (Table 1). However, their relative
functional importance, hierarchy and interactions
during central and peripheral responses to stress are
largely unclear. As the most upstream element of the
central HPA axis and as a prototypic ‘stress hormone’
that is also generated by several peripheral cells, CRH
has a key role in coordinating and controlling complex
responses to psychological stress, both systemically and
locally [24]. In fact, it has been proposed that CRH be
renamed stress-response hormone (SRH) to reflect its
expanding role [5].

CRH and its receptor (CRHR) are expressed at the gene
and protein level in the skin [25,26], whereas CRH-like
immunoreactivity is present in the dorsal horn of the
spinal cord and dorsal root ganglia [27]. In addition to the
often-quoted immunosuppressive effects of CRH, relevant
examples of pro-inflammatory actions of CRH have been
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Figure 1. Principles of the stress response. The coordinated activation and eventual downregulation of the three super-systems (the nervous, endocrine and immune

systems) ensures equilibrated stress-response patterns that result in allostasis. Allostatic overload causes disequilibrium, upregulation of immune responses and disease.
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introduced [28] and include carrageenin-induced aseptic
inflammation [29] and arthritis, where both CRH and
urocortin (Ucn) have been identified in the joints [30]. In
fact, mast cells in the joints of patients express CRHR [30].
Moreover, inflammatory arthritis, which is absent in
W/Wv mast cell-deficient mice, is greatly attenuated
in CRH-deficient mice [31] and is blocked by the
CRHR-1 antagonist antalarmin [32].
Table 1. Key protagonists in the response to psychological stress

Stress mediator Main biological effect

Hormones of the HPA axis (CRH, ACTH,

glucocorticoids)

Activate mast cells

Upregulate production of IL-

Inhibit the production of IL-12

and T helper (Th)1 cells

Prolactin (PRL) Participates in early and late

pro-inflammatory and apopt

Catecholamines Regulate the immune system

receptors expressed on imm

Induce lymphocytosis, affect

modulates cytokine producti

Stimulates or augments mas

SP Induces inflammation

Induces lymphocyte prolifera

Activates mast cells

PACAP Activates mast cells, induces

Hemokinin Activates mast cells, induces

NT Activates mast cells, induces

CGRP Inhibits proliferation and IL-2

Activates mast cells, induces

Neuropeptide Y (NPY) Activates mast cells

Induces adherence, chemota

cytokine production

Activates mast cells, induces

b-endorphin Effects chemotaxis and phag

Interacts with mast cells

VEGF Induces vascular permeabilit

NGF Promotes ‘cross-talk’ betwee

Acts as autocrine and paracr

immune cells

Promotes monocyte and ma

Activates mast cells

SCF Promotes mast-cell prolifera
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Skin: the ultimate model for neuroimmunological stress

research

In the skin, ‘itch’ (pruritus), excessive sweating (hyper-
hidrosis) and ‘flushing’ (facial erythema), and many
dermatoses such as atopic dermatitis, psoriasis, sebor-
rhoic eczema, prurigo nodularis, lichen planus, chronic
urticaria and alopecia areata, can be triggered or
aggravated by stress [33].
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activate (b) the structural peripheral stress-response elements targeting the skin (c). The coordinated activation and eventual downregulation of the three super-systems (the

nervous, endocrine and immune systems) ensures equilibrated stress-response patterns that result in allostasis. Allostatic overload causes disequilibrium, upregulation of
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Psoriasis is the classic model of an inflammatory,
hyperproliferative skin disease with an immune patho-
genesis that is triggered or aggravated by psychological
stress [34]. It was originally speculated that substance P
(SP) [7], which is released in response to stress by sensory
skin nerves, is the main stress mediator in psoriasis [35].
Nerve growth factor (NGF) has since been shown to
control the intracutaneous release of proinflammatory
neuropeptides, mast-cell degranulation and T-cell acti-
vation upstream of SP [36]. Interactions between
mast cells, nerves and neuropeptides have also been
implicated in atopic dermatitis [37]. Unlike psoriasis,
atopic dermatitis is typically associated with elevated skin
production of Th2 cytokines [38]. Recent work from a
mouse model of sound-induced stress supports an NGF–
SP–mast cell hierarchy in neurogenic skin inflammation
[7,39]. The skin presents the largest interface with the
environment. Moreover, the common neuroectodermal
origin of the skin with the CNS is reflected throughout
later life in its function as a crucial sensory organ, its
unusually dense and intricate innervation and its role as
www.sciencedirect.com
both a major target and source for most of the key players
of neuroimmunoendocrine signaling, including numerous
neurotransmitters, neuropeptides, neurotrophins and
neurohormones that are generally associated primarily
with the nervous and neuroendocrine systems (Table 1)
[33,35,40]. Furthermore, the response patterns of the skin
are easily discerned by the naked eye and tissue sampling
for in-depth analysis is simple.
Skin mast cells as ‘central switchboards’ of stress

response

Skin mast cells have a key role in the peripheral response
to stress, acting as ‘central switchboards of neurogenic
inflammation’ [41] and as major stress sentinels at the
interface of the neuroimmunoendocrine environment [42].

Mast cells derive from a bone marrow progenitor and
differentially mature in peripheral tissues, depending on
local microenvironmental conditions. Mast cells are
located perivascularly close to SP and calcitonin-gene
related peptide (CGRP)-containing neurons [7]. Based on
their prominent, preferential localization around nerves
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and blood vessels, mast cells are now recognized as crucial
first-line defense components of innate immunity, modu-
lators of adaptive immune responses [43]. As ‘tunable’
effector and immunoregulatory cells [44], mast cells are
thus ideally equipped and strategically placed to integrate
and relay signals from all three super-systems during the
peripheral tissue response to psychological stress.

Skin mast-cell activation, growth and/or survival are
regulated by prototypic stress mediators: CRH, adreno-
corticotropin (ACTH), SP, NGF and stem-cell factor (SCF)
promote proliferation and activation, whereas catechol-
amines and corticosteroids inhibit mast-cell function [45].
For example, skin mast cells degranulate in response to
acute stress or administration of CRH in vivo and in vitro
[46], CRH administration induces neurogenic inflam-
mation in rat skin, and CRH-neutralizing antibodies
abrogate stress-induced degranulation of skin mast cells.
NGF is released during stress [39,47] and promotes mast-
cell maturation, survival, proliferation and degranulation
[48]. Furthermore, stress-induced upregulation of SP
results in activation/degranulation of skin mast cells [7]
via the high affinity SP receptor neurokinin-1 (NK-1) [49],
which is upregulated by IL-4 or SCF [50].

In addition to IgE and antigen [51], free immuno-
globulin light chains [52], anaphylatoxins, cytokines,
hormones, endovanilloids and neuropeptides can all
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trigger mast-cell secretion [53]. The neuropeptides
triggering mast-cell secretion include SP [7], neurotensin
(NT) [11] NGF [54] and hemokinin A [10], as well as
pituitary adenylate cyclase activating polypeptide
(PACAP), which is localized in dermal nerve fibers [9]
(Figure 3). Mast cells secrete a multitude of vasodilatory
and proinflammatory mediators, such as histamine,
heparin, kinins, proteases (preformed) and leukotrienes,
prostaglandins, nitric oxide (NO) and cytokines
(newly synthesized). In addition to histamine, vasoactive
intestinal polypeptide (VIP) and tumor necrosis factor-a
(TNF-a), mast cells also release vascular endothelial
growth factor (VEGF) an isoform of which is particularly
vasodilatory [55] (Figure 3). Moreover, overexpression of
VEGF in mouse skin causes a psoriasiform skin inflam-
mation [56], and mast cells might be involved in promoting
the cascade of intracutaneous events that leads to
psoriasis [36].

Mast cells can undergo ultrastructural alterations of
their electron-dense granular core that are indicative of
secretion but without degranulation, a process termed
‘intragranular activation’ [57]. Such activation might be
associated with the ability of mast cells to release key
mediators of skin inflammation selectively, for example, as
reported for serotonin [58] or IL-6 and TNF [43]. IL-1 can
stimulate selective release of IL-6 [59], whereas CRH
Triggering or exacerbating
inflammatory skin diseases

Histamine,
IL-1, IL-6

Neurosensitizing pro-
inflammatory and vasoactive
mast cell mediator
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ntribute to the pathogenesis of inflammatory skin disorders. Points of possible
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stimulates selective release of VEGF from mast cells [60].
Mast-cell-derived TNF enhances T-cell activation [43] and
mast-cell-derived proteases activate proteinase-activated
receptors (PARs) [61] on sensory neurons, which in turn
augment the inflammatory response via the release of
additional SP [33]. Tryptase-releasing mast cells are found
in close proximity to PAR-2-expressing cells, such as
keratinocytes, dermal endothelial cells and C-fibers
during inflammation [33,61]; therefore, positive feedback
loops centering on the mast cell can be envisioned by
which stress-induced and/or neurogenic inflammation is
rapidly upregulated (Figures 2 and 3).

It remains to be shown how this mast cell-driven
inflammatory response to stress is attenuated and
controlled, to avoid its perpetuation because it is
characteristically seen during chronic inflammatory
skin diseases, such as atopic dermatitis and psoriasis
vulgaris [34,37]. The short half-life of some mast-cell
products (owing to rapid cleavage), and the CRH-induced
upregulation of immunosuppressive substances such
as a-MSH [25,62], are important natural inhibitors of
stress-induced inflammation.

Clearly, additional cell populations besides mast cells,
particularly members of the innate immune system, such
as natural killer (NK) cells or dendritic cells, are present
in the skin and are likely to have a role within the brain–
skin cross-talk.

Why the hair follicle is an ideal model for stress research

The multi-directional nature and the ever-increasing
complexity of neuroimmunoendocrine communication
during stress responses (Figures 1–3 and Table 1) requires
that simplified but physiologically and clinically relevant
research models are used to dissect how psychological
stress regulates peripheral tissue functions.

The hair follicle represents a prototypic neuroecto-
dermal–mesodermal tissue interaction system and is one
of the most densely and intricately innervated of all
peripheral tissues [63]. Production of a pigmented hair
shaft and the cyclic transformation of hair follicles from
their ‘resting’ state (telogen) into the active, hair-shaft-
producing state (anagen) via apoptosis-driven organ
involution (catagen) back to telogen (the ‘hair follicle
cycle’) depends on coordinated tissue interactions:
neuroectodermally derived cell populations (hair follicle
keratinocytes and melanocytes) interact with a specialized
mesenchyme (fibroblasts of the dermal papilla and the
connective tissue sheath of the hair follicle), which retains
striking inductive properties throughout adult life [64].

During the cyclic remodeling of the hair follicle, the
perifollicular innervation shows substantial neural plas-
ticity even in adult mammals [64,65], along with significant
changes in both sensory and adrenergic skin innervation
[66] and in mast cell–nerve contacts [7]. Much of this
hair cycle-associated neural plasticity appears to result
from the fact that the (continuously remodeled) hair
follicle epithelium is a major intracutaneous source of
neurotrophins, which are also used to control hair follicle
development and cycling [39]. Moreover, the hair follicle
connective tissue sheath is a major source of skin mast-cell
progenitors and multipotent skin stem cells [7,39,67]. Given
www.sciencedirect.com
the central role of mast cells in neurogenic inflammationand
peripheral tissue stress responses, it is also interesting to
note that perifollicular mast cells operate as important,
although non-essential, modulators of hair follicle cycling
[7,67]. Furthermore, murine hair growth in vivo and in skin
organ culture is modulated by endogenous mast-cell
secretagogues (such as SP, CRH and ACTH) that also act
as major stress-response mediators [24,40,64].

The hair follicle is one of the most hormone-sensitive
tissues known in mammalian biology. This includes a high
degree of sensitivity to key ‘stress-associated’ hormones,
such as CRH, ACTH, cortisol, catecholamines and
prolactin, all of which act as hair growth modulators in
human and/or mice via stimulation of high affinity
receptors [26,40]. Surprisingly, the hair follicle is not
only a prominent target but also operates as a potent
peripheral source for all these ‘stress mediators’, including
a fully functional peripheral equivalent of the HPA axis
[40,64].

In addition to sensory skin nerves and skin mast cells,
hair follicle keratinocytes prominently express
functional vanilloid receptors (VR) and respond to VR1-
stimulation, for example, by premature entry into hair
follicle regression (catagen) [67]. It is, therefore, con-
ceivable that endogenous VR1 ligands and activators
(e.g. endovanilloids, such as anandamide, low pH, heat
and select eicosanoids) also affect hair growth and
perifollicular neurogenic inflammation under conditions
of stress, both indirectly (e.g. via mast-cell activation) and
directly (via effects on the hair follicle epithelium). Finally,
‘stress’ has long been implicated as a possible cause of hair
loss, with stress recognized as a major aggravating factor,
once hair loss has occurred [7]; stress-induced alopecia
areata can also be associated with increased expression of
CRHR-2 in the affected skin [68].

The hair follicle is therefore ideally suited to explore the
inter-system communication that characterizes stress
responses – including the ‘switchboard’ role of mast cells
and peripheral tissue reactions to systemic stress-response
networks. This notion becomes even more convincing if one
considers that no other organ of the mammalian body is as
easily accessible, available in such abundance and can be
microdissected, organ cultured and experimentally manipu-
lated with such relative ease as the skin.

Stress-induced hair growth inhibition in mice: leads

and lessons

An established mouse model for chronic (sound-induced)
psychological stress severely impairs mechanisms
of immune tolerance [e.g. induces a Th1OTh2 cytokine
ratio and decreases the expression of indoleamine 2,
3-dioxygenase (IDO) and the presence of CD4CCD25bright

regulatory T (Treg) cells] [22]. Furthermore, increased
expression of leukocyte function-associated antigen (LFA)-
1 acts as a key peripheral blood marker for stress perception
[22]. This stress model is now widely used in multiple
approaches of neuroimmunological stress research, for
example, to evaluate the effects of stress on bronchial
hyperreactivity [69] or in experimental colitis [18].

In this model, it was recently substantiated that stress
can exert profound inhibitory effects on hair growth,

http://www.sciencedirect.com


Review TRENDS in Immunology Vol.27 No.1 January 2006 37
accompanied by severe skin inflammation [7,39,70,71].
Exposure to sonic stress inhibited the growth of hair shaft-
producing (anagen) follicles by premature induction of
hair follicle regression (catagen) and by upregulating
intrafollicular keratinocyte apoptosis [7]. In a distinct,
complementary rodent stress model, mice exposed to foot
shock showed a significantly retarded spontaneous switch
of telogen follicles into anagen [72].

Sound stress exposure induces neurogenic inflammation
characterized by increased NGF expression in the skin,
perifollicular mast-cell degranulation and perifollicular
accumulation of activated macrophages [7,39]. In the
absence of functional mast cells or neurokinin-1 receptors
(NK-1R) [71], and in thepresenceof NK-1Rblockers [7,70] or
NGF-neutralizing antibodies [39], stress exposure fails to
induce premature hair follicle regression, neurogenic skin
inflammation and hair follicle keratinocyte apoptosis
[7,39,70,71]. Sound stress exposure is associated with an
upregulation in the number of intracutaneous SPC nerve
fibers and of SP immunoreactivity in dorsal root ganglia
(DRG), as measured by retrograde tracing [39]. Intriguingly,
the hair growth inhibitory and proinflammatory effects
of sonic stress can largely be mimicked by systemic
administration of SP and NGF, and can almost be abolished
byco-administeringappropriate antagonists orneutralizing
antibodies [7,39]. Therefore, in this model, psychological
stress activates a defined, hierarchically organized cascade
of events in which NGF, SP and mast cells apparently have
the key roles (Figure 4).
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Skin stem cells, which are vital for skin homeostasis
and self-renewal [63,67], might also be vulnerable to
stress. The major epithelial stem cells of the hair follicle
are located in its so-called bulge region [63], therefore, it is
striking to note that an abnormally high number of
apoptotic cells is seen in this hair follicle region after
sonic stress, in the immediate proximity of dense, stress-
induced perifollicular inflammatory cell infiltrates [7].
Thus, the stress-induced activation of perifollicular mast
cells and macrophages might cause substantial, and
potentially irreversible, skin damage by upregulation of
stem cell apoptosis through the secretion of inflammatory
cytokines, such as TNF, IL-1b and interferon (IFN)-g.

These findings also have practical implications
for animal experimentation. If the profound neuroimmuno-
logical effects of auditory psychological stress on test
animals are ignored (something that is quite common in
animal facilities and in laboratories, yet is notoriously
underestimated), this may be the reason why it is
frustratingly difficult to reproduce the results of an
in vivo experiment. Measuring serum corticosterone levels
might be a useful index of the stress status of the animals,
ideally to be performed in conjunction with simple
behavioral and neuroimmune assays.
Pharmacological stress interventions

No specific pharmacological intervention – other than
antidepressants and anxiolytics – is currently clinically
available to manage selectively the impact of psychological
stress on skin disorders in humans. However, reasonable
pharmacological treatment options are coming into
sight (Table 2). Mast cells could be prominent targets of
CRH and related peptides, contributing to neurogenic
inflammation; it is therefore reasonable to propose the
use of CRHR antagonists [5]. CRHR antagonists
(e.g. antalarmin or astressin) would be one class of
molecules that could be tested by local administration in
the model systems described, especially because higher
CRHR-1 gene expression was documented in contact
dermatitis [73].

An effective therapeutic intervention, for example, to
abrogate stress-triggered telogen effluvium, would have to
prolong the anagen phase of the hair cycle, thus
preventing the premature onset of catagen, which forms
the basis of stress-induced telogen effluvium [64].
External application of the potassium channel opener,
minoxidil, to human scalp skin over many months can
prolong anagen [74]. It is therefore interesting that topical
minoxidil also counteracts the sonic stress-induced, hair
growth-inhibitory changes in murine skin effectively
in vivo [74] (Table 2). Furthermore, SP can be blocked by
the application of a high-affinity NK-1R antagonist [7].
However, SP might not be the only, or the main,
neuropeptide involved under conditions of stress-induced
inflammation because NK-1R, but not SP, are required for
stress-induced vascular permeability of the dura mater,
suggesting the involvement of some other NK-1 receptor
agonist, such as hemokinin [10]. Recently, NGF was
identified to act upstream of SP in neurogenic skin
inflammation and its receptor antagonists could be used
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Table 2. Perspectives in pharmacological stress intervention in skin

Pharmacological intervention Effect on skin immune response to stress Species

Topical application of CRHR-1 antagonists [73] Inhibition of acute stress and CRH-induced skin mast-cell activation and

vascular permeability

Rat

Systemic administration of selective NK-1

receptor blocker [7]

Inhibition of stress-induced premature catagen development Mice

Diminished occurrence of perifollicular MHC class II cluster

Decrease of activated mast cells

Note: NK-1RK/K mice are protected from stress-induced upregulation of SP

innvervation of the skin, mast-cell activation and stress-triggered patho-

physiological patterns of hair follicle apoptosis

Systemic administration of NGF neutralizing

monoclonal antibodies [39]

Inhibition of stress-induced premature catagen development Mice

Decrease of pathophysiological patterns of apoptosis in the skin

Decrease of SP-positive neurons in spinal ganglia and skin

Prevention of mast-cell activation

Topical application of ATP-sensitive potassium

channel opener (minoxidil) [74]

Prevention of stress-promoted premature catagen development Mice

Decrease of activated mast cells

Decrease of MHC IIC cluster

Increase of Ki67C proliferating intrafollicular cells (hair bulb)
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for treatment of stress-aggravated skin disorders, such as
psoriasis [36] and stress-induced telogen effluvium.

Conclusions

There is now solid evidence for the existence of both
a defined ‘brain–skin axis’, which includes mast cells,
NGF and SP [7,39,70], and an intrafollicular equivalent
of the central HPA ‘stress axis’ that includes the
production of CRH, ACTH and cortisol [25,26]. One
major neuroimmunological research challenge is
to elucidate the hierarchical, temporal and spatial
interactions of these parameters during central and
peripheral responses to psychological stress. Although
there are still many more questions than answers, the
neuroimmunology of the ‘brain–skin connection’ during
the response to psychological stress is becoming increas-
ingly defined, not the least because of the development of
particularly instructive rodent models of stress-induced
exacerbation of inflammatory skin conditions and hair
growth inhibition. The findings resulting from further
exploitation of these models will greatly enrich the current
list of candidate molecular targets for clinically useful
therapeutic intervention into stress.
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