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  Background : Autism spectrum disorders (ASDs) are neurodevelopmental 
disorders characterized by difficulties in communication and by repetitive 
and stereotypic behaviors, as well as by social impairment, attention, cogni-
tive, and learning defects. ASDs present in early childhood and their preva-
lence has increased significantly to 1/150 children. Despite a number of 
theories, the actual reasons for this increase are still not clear. There is no 
reliable screening test, and no definite pathogenesis or curative therapy. 
Consequently, there is a major gap hampering development of effective 
treatments.  Objective : To review recent publications on ASDs pathogenesis 
and treatment with emphasis on neuroimmune processes and new thera-
peutic approaches.  Methods : Mostly original papers (450) on epidemiology, 
possible pathogenesis or treatment of ASDs in Medline from 1990 to May 2009 
were reviewed. All authors contributed to this review.  Results/conclusion : 
Increased oxidative stress and immune dysregulation are present in ASDs. Mast-
cell activation may contribute to gut–blood–brain barrier disruption and 
brain inflammation. No effective treatments have emerged. Well-designed 
clinical trials with nonpsychotropic drugs were few and ASD characteristics 
varied considerably, making conclusions difficult. Psychotropic drugs are often 
used for stereotypic and aggressive behaviors. Unique combinations with 
antioxidant and anti-inflammatory flavonoids hold promise. New potential 
translational research areas and possible treatments are  suggested.  
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  1.   Introduction 

 Autistic disorder, Asperger’s disorder and atypical autism, also known as pervasive 
developmental disorder not otherwise specified (PDD-NOS), constitute the 
autism spectrum disorders (ASDs). These are neurodevelopmental disorders diag-
nosed in early childhood, with a male to female ratio of 4 : 1  [1,2] . ASDs are 
characterized by varying degrees of dysfunctional communication and social abili-
ties, repetitive and stereotypic behaviors, and by defects in attention, cognition, 
learning and sensory functioning  [1,3] . Cognitive impairment can vary in ASDs, 
with Asperger’s disorder being high functioning whereas mental retardation may 
be present in as much as 75% of the time in autistic disorder. A period of normal 
development may be suddenly followed by loss of acquired skills and delay in 
acquisition of new ones  [4] . 

 Prevalence estimates indicate that ASDs have increased considerably from 
4/10,000 before 1980 to as many as 90/10,000  [2-8] . A recent review of 43 studies 
published since 1966 concluded that a best estimate is 60 – 70/100,000 or 
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1/150  [9] ; however, the same study could not point to a true 
increase in incidence. A recent paper evaluated ASD in Cali-
fornia and concluded that there had been a 7- to 8-fold 
increase in cases since 1990. Changes in diagnostic criteria, 
inclusion of milder cases and earlier age at diagnosis could 
not account for more than a 2.2-fold increase at best, leaving 
the majority of ASD cases unexplained  [10] . Environmental 
factors might also be involved, and the prevalence of ASDs 
in New Jersey has been found to be double that in West 
Virginia  [2] . The role of mercury in vaccines has been debated 
extensively; whereas many epidemiological studies do not 
support a causal association between vaccines and 
autism  [11-15] , others provide evidence to the contrary  [16,17] . 
For instance, 87% of children included in the US Vaccine 
Adverse Event Reporting System (VAERS) had ASDs  [18] . 
Moreover, a paper based on computerized medical records in 
the Vaccine Safety Datalink concluded that there was ‘signifi-
cantly increased rate ratios for ASDs with mercury exposure 
from thimerosal-containing vaccines’  [19] . Population-based 
studies cannot determine a ‘causal relationship’ if they involve 
subpopulations of patients or vulnerable individuals. 

 Recent reviews that have summarized the current findings 
in autism research focus mostly on neural processes  [20,21]  or 
genetics  [22-26] . Rett and fragile X syndromes, as well as 
tuberous sclerosis, are associated with ASDs, but explain 
only a small percentage of cases. There is no biochemical or 
genetic screening test. One recent study suggested the use of 
novel probes that identified a partial duplication in the 
 ASMT  gene, observed in 6% of children with ASDs as com-
pared to 2% of controls, to screen children suspected of 
ASDs  [27] . Recent studies indicate genome-wide abnormali-
ties. Association studies have identified single nucleotide 
polymorphisms in genes encoding neuronal cell adhesion 
molecules and calcium channels. However, no gene abnor-
mality alone can explain the apparent increase in prevalence 
over the last 20 years  [28-30] . 

  1.1   Oxidative stress 
 Considerable evidence indicates that oxidative stress might 
be unregulated in patients with ASDs, possibly due to 
decreased ability to neutralize free radicals ( Table 1 ). One 
study of autistic children (n  =  305) and controls (n  =  205) 
reported that plasma  S -adenosylhomocysteine, which was 
used as an indicator of methylation ability, was signifi-
cantly lower in autistic children  [31] . Another study found 
reduced plasma levels of the key endogenous antioxidant 
 S -adenosylmethionine (SAMe)  [32] . 

 Such deficiencies might, in certain cases, be associated 
with mercury toxicity, which was recently shown to be tightly 
bound to, and inactivate, thioredoxin  [33] . In fact, the gluta-
thione redox index was found to be decreased and oxidized 
glutathione to be increased both in the cytosol and the 
mitochondria of lymphoblastoid cell lines obtained from 
patients with autism disorder as compared to controls  [34] . 
Moreover, exposure to thimerosal further exacerbated these 

imbalances  [34] . Two other studies support a possible associa-
tion between mercury exposure and increased oxidation 
stress. In one study, patients with ASDs (n  =  38) were shown 
to have decreased plasma levels of reduced glutathione, 
cysteine, and sulfate, but increased plasma levels of oxidized 
glutathione as compared to age-matched neurotypical con-
trols (p < 0.001)  [35] . In another study, patients with severe 
ASDs (n  =  28) had significantly increased urinary porphy-
rins associated with mercury toxicity (pentacarboxyporphy-
rin, precoproporphyrin, and coproporphyrin) as compared 
to patients with mild ASD using the Childhood Autism 
Rating Scale  [36] . Decreased plasma levels of reduced gluta-
thione, cysteine, and sulfate were again noted, suggesting 
increased oxidation stress and reduced detoxification ability, 
especially of mercury. Finally, cerebellar homogenate levels 
of the oxidative stress marker 3-nitrotyrosine were elevated 
by about 70% in autistic subjects (n  =  9, mean age 12 years), 
as was cerebellar mercury, as compared to control cerebellar 
tissue (n  =  10, mean age 15 years)  [37] . 

 Erythrocyte superoxide dismutase (SOD) and the endoge-
nous antioxidants plasma glutathione peroxidase and eryth-
rocyte glutathione peroxidase (GSH-Px) were also 
significantly reduced in autistic children (n  =  45) com-
pared to controls (n  =  41)  [38] . The parents of autistic 
children also had decreased serum methylation capacity 
and reduced glutathione-dependent antioxidant ability  [39] . 
Serum levels of the antioxidant proteins transferrin and 
ceruloplasmin were also significantly reduced in children 
with ASDs compared to their nonautistic siblings  [40] . 
Moreover, there was a strong correlation between the 
reduced levels of these proteins and loss of previously 
acquired language skills in autistic children  [40] . Another 
study showed increased urine levels of isoprostane F(2 α )-VI, 
2,3-dinor-thromboxane B2 and 6-keto-prostaglandin F1 α , 
indicating increased levels of lipid peroxidation  [41] . 

 Two recent studies have reported mitochondrial dysfunction. 
One showed evidence of increased mitochondrial metabolism 
and oxidized mitochondrial proteins in temporocortical gray 
matter in postmortem samples from six autistic patients as 
compared to six matched controls  [23] . The other reported 
that 11/21 patients with a primary diagnosis of ASD had 
definite mitochondrial disease, and the rest probable 
mitochondrial disease, depending on the criteria  [42] . This 
evidence implies that autistic patients might have excessive 
reactive oxygen species (ROS) production and reduced 
methylation capacity  [43] .  

  1.2   Immune dysregulation in autistic 
spectrum disorders 
 Increasing evidence suggests that there are some generalized 
immune abnormalities in at least a subgroup of patients 
with ASDs ( Table 2 )  [44-47] . Children with autism (n  =  35) 
were reported to have 11 genes, associated with natural 
killer (NK) cells, that were upregulated 1.5-fold as compared 
to children (n  =  14) who did not meet the criteria for autism 
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(p < 0.02)  [48] . NK-cell-related molecules such as perforin, 
granzyme B, and interferon gamma (INF- γ ), were signifi-
cantly upregulated in 52 children with ASDs (p < 0.01) as 
compared to 27 controls  [49] . Cerebrospinal fluid (CSF) lev-
els of tumor necrosis factor (TNF) were significantly higher 
than corresponding serum levels in ten autistic children  [50] . 
Moreover, TNF-receptor II was elevated in 35 children with 

  Table 1     . Increased oxidative stress in autistic spectrum 
disorders.   

 Increased oxidative stress  Ref. 

Decreased plasma and erythrocyte glutathione 
peroxidase, and superoxide dismutase

 [38] 

Decreased cellular and mitochondrial glutathione 
redox imbalance in lymphoblastoid cell lines

 [34] 

Decreased plasma  S -adrenosyhomocysteine and 
 S -adenosylmethionine

 [31,32] 

Decreased serum antioxidant transferrin and 
ceruloplasmin

 [40] 

Increased urine phospholipid peroxidation products  [41] 

Increased temporocortical gray matter mitochondrial 
metabolism, oxidized mitochondrial proteins 
and excessive Ca 2+ 

 [23] 

Evidence of mitochondrial disease  [42] 

  Table 2     . Neuroimmune fi ndings in autistic spectrum 
disorders.   

 Neuroimmune fi ndings  Ref. 

Reactive astrogliosis and activated microglia  [44,57] 

Circulating antibodies to brain proteins  [69,70] 

High CSF TNF- α  [50] 

Increased brain IL-6, IL-8, and TNF  [52] 

High CSF and brain levels of MCP-1 and TNF; 
MCP-1 is chemotactic for mast cells, which release 
TNF- α  and IL-6

 [59] 

High TNF production from peripheral leukocytes  [87] 

Reduced serum TGF- β 1, which is inhibitory for mast 
cell maturation and activation

Increased serum macrophage MIF, also released 
from mast cells

 [56] 

Increased circulating IL-6 levels that cross the placenta 
at midgestation and induce the release of fetal stress 
hormones resulting in fetal brain injury and autistic-like 
behavior after maternal mouse viral infection

 [62] 

Increased IL-6 in the placenta and brain leading to 
autistic-like behavior in mice after maternal viral 
poly(I : C) injection

 [63] 

   CSF: Cerebrospinal fl uid; IL: Interleukin; MCP-1: Macrophage chemoattractant 
protein-1; MIF: Migration inhibitory factor; TGF- β 1: Transforming growth 
factor-beta 1; TNF: Tumor necrosis factor.   

ASDs as compared to controls (p < 0.02)  [51] . Expression of 
TNF, along with interleukin-6 (IL-6) and IL-8, was recently 
shown to be increased in the brains of ASD patients as com-
pared to matched controls  [52] . TNF and other cytokines 
can affect cognitive functions in humans  [53] . Inhibition of 
macrophage migration in response to human myelin basic 
protein was higher in 17 autistic patients than in 13 patients 
with other mental conditions  [54] . Preliminary evidence 
showed that peripheral blood mononuclear cells from ASD 
children (n  =  19) secreted more IL-1 β  and IL-8 than age-
matched controls when stimulated with lipopolysaccharide 
(LPS) following exposure to the common environmental con-
taminant 2,2 ′ ,4,4 ′ -tetrabrominated biphenyl (BDE-47)  [55] . 
Plasma levels of macrophage migration inhibitory factor 
(MIF) were higher in family probands with ASDs than in 
their unaffected siblings, and correlated with ASD symp-
toms  [56] . Postmortem brains, microglia, and the CSF of 
patients with ASDs contained high levels of macrophage 
chemoattractant protein-1 (MCP-1)  [57] , which is also a 
potent chemoattractant for mast cells  [58] . Conversely, plasma-
transforming growth factor-beta (TGF- β 1) was significantly 
lower in 75 children with ASDs than in 68 controls  [59] . 
TGF- β 1 inhibits human intestinal mast-cell functions  [60]  and 
downregulates the expression of high-affinity IgE receptor 
(Fc ε RI) on mast cells  [61] . 

 Maternal viral infection in mice has been found to result in 
substantial increases in circulating IL-6 levels, which cross the 
placenta at midgestation and induce the release of fetal stress 
hormones resulting in fetal brain injury  [62] . Viral poly
(I : C) injection in mice to mimic viral infection also raised 
IL-6 in the placenta and brain, leading to autistic-like behavior 
that could also be induced by a single IL-6 injection  [63] . It is 
intriguing that acute stress can increase serum IL-6 levels, but 
not in mast-cell-deficient mice  [64] . IL-6 can be involved in 
disruption of the blood–brain barrier (BBB)  [65,66] .  

  1.3   Disruption of the blood–brain barrier in autistic 
spectrum disorders 
 A number of studies suggest that the BBB is breached in 
ASDs. Serum from autistic children contained a number of 
autoantibodies against encephalogenic peptides that cross-
react with milk butyrophilin  [67] . Another study showed that 
plasma from 21% of patients with ASDs had antibodies 
against one cerebellar protein (p  =  0.001)  [68] . Moreover, 
more autistic children than their unaffected control siblings 
(p < 0.01) had serum autoantibodies to human brain, espe-
cially the cerebellum and cingulate gyrus  [69] . In another 
study, plasma from 37% of children with autism (n  =  62) 
contained antibodies with reactivity against three hypotha-
lamic proteins, as compared to 13% in normally developing 
controls (n  =  63, p  =  0.004)  [70] . Autoantibodies against 
brain proteins also appear to be present in mothers of ASD 
children. Serum from 100 mothers with ASD children con-
tained significantly more antibodies that recognized embryonic 
brain tissue  [71] . Specific patterns of antibody reactivity to 



Autism: an emerging ‘neuroimmune disorder’ in search of therapy

2130 Expert Opin. Pharmacother. (2009) 10(13)

adult rat brain proteins were present in mothers of ASD 
children for 2 – 18 years after the birth of the affected chil-
dren  [72] . In one study of 61 mothers with ASD children, 
11.5% had antibodies against fetal, but not adult, brain, as 
compared to 62 mothers of normal children (p  =  0.0061) and 
to 40 mothers with children identified as having non-ASD 
developmental delays (p  =  0.04)  [73] . It is not known when or 
how the BBB becomes disrupted in patients with ASDs.  

  1.4   Allergic symptomatology in autistic 
spectrum disorders 
 A number of papers indicate that many children with ASDs 
have allergic symptoms, often in the absence of positive skin 
testing ( Table 3 ), and may comprise a subgroup of patients 
with ASD. In a National Survey of Children’s Health, par-
ents of autistic children reported symptoms of allergies more 
often than those of other children, with food allergies being 
the most prevalent complaint  [5] . A recent study of 362 
ASD patients in Italy reported that the strongest association 
was with history of allergies  [74] . A case series study also 
reported higher rate of food intolerance in ASD children  [75] . 
In another study, there were significantly higher levels of 
IgA antibodies to casein, lactalbumin, and beta lactoglobulin 
in autistic children (n  =  36) than controls (n  =  20), with 
marked improvement in behavioral symptoms after an 
8-week elimination of the antigen involved  [76] . Food intol-
erance may affect as many as 16% of children in general  [77]  
and up to 34% of 3-year-old children, leading to significant 
behavioral responses  [78] . Unfortunately, the terms ‘food 
allergy’  [79]  and ‘food intolerance’  [80]  are often used inter-
changeably, even though the latter is not IgE mediated. 
Mast cells are involved in food-related and other gastrointes-
tinal (GI) pathology  [81] , such as in inflammatory bowel 
disease  [82] , and irritable bowel syndrome  [82,83] , in which they 
can increase intestinal permeability, which might also explain 
other GI complaints in ASD patients  [6,84] . A paper report-
ing on mitochondrial dysfunction in ASDs patients also 
concluded that GI complaints was the most common non-
neurogenic dysfunction in 64% of the ASD subjects investi-
gated  [42] . Another recent paper also reported an apparent 
association between ASD children with language regression 
and GI symptoms  [85] , whereas another reported that from 
172 patients with pervasive developmental disorder (PPD), 
those 22.7% with GI problems also had greater symptom 
severity, especially irritability and anxiety  [86] . Peripheral 
blood mononuclear cells from ASD children with GI symp-
toms produced higher TNF- α  in response to gluten gliadin, 
cow-milk protein, and soy  [87] . However, ‘autistic enterocoli-
tis’ has been disputed, and a nested case-control study found 
no association between autism and any GI disease  [88] . 

 A paper reporting terminal ileal lymph nodular hyperpla-
sia (LNH) in 129/144 (90%) of ASD children as compared 
to 8/27 (30%) in controls (p  =  0.0003)  [89]  has been dis-
puted. Yet a separate study independently reported LNH to 
be present in 60 – 70% of autistic patients, with ileocolitis 

present in 76%  [90] . Nevertheless, it is difficult to document 
a ‘leaky gut’  [91]  that could permit the systemic absorption 
of substances adversely affecting brain function. It would be 
interesting to investigate levels of heparan sulfate, a reduc-
tion of which was associated with increased intestinal per-
meability  [92,93] , especially as ASDs patients appear to have 
low sulfation capacity  [94]  and might not produce sufficient 
quantities of sulfated proteoglycans. 

 In a small study of ASD children (n  =  6), there was at 
least one manifestation of allergy in all patients and more 
than two symptoms in 50%; however, the serum or IgE was 
not elevated, suggesting non-IgE-dependent mechanisms  [95] . 
In another study, 30% of autistic children (n  =  30) had a 
family history of atopy as compared to 2.5% age-matched 
‘neurologic controls’ (n  =  30), but there was no difference in 
serum IgE or in skin-prick tests to 12 common antigens  [96] , 
again implicating triggers other than IgE. Autistic patients 
had higher urine levels of prostaglandins  [41] , which are 
mainly produced by mast cells. Collectively, these results 
suggest that nonallergic mast-cell activation might be involved 
in at least a subgroup of patients with ASDs. It was recently 
shown that serum levels of IgG4, associated with atopic 
phenotype, were increased in children with ASDs  [49] . 

 Many of the symptoms that characterize ASD patients are 
also present in patients with mastocytosis, a spectrum of rare 
disorders involving proliferation and activation of mast cells 
in the skin and other organs  [97-99] . Such symptoms include: 
allergies, behavioral problems, ‘brain fog’, diarrhea, food 
intolerance, and skin reactions, often in the absence of positive 
skin testing ( Box 1 ). 

 The Mastocytosis Society  [100]  has produced a video together 
with the American Academy of Allergy, Asthma and Immu-
nology, entitled ‘Mast-cell activation symptomatology’. This is 
being distributed free to physicians to sensitize them to the fact 
that allergies may be only one aspect of mast-cell activation. 
A preliminary report indicated that the prevalence of ASDs 
might be 10-fold higher in mastocytosis patients than in the 
general population (in which the prevalence is 1/150)  [101] . 
Moreover, serum IL-6 is elevated in most mastocytosis 
patients  [102]  and might be relevant to findings discussed earlier 
linking elevated IL-6 to autistic phenotype in mice. 

 These results do not indicate a cause-and-effect relation-
ship, but do suggest an increased risk associated with mast cell 
activation. Such a risk could extent to the period of gestation. 
A nested case control study of ASD children (n  =  407) and 
controls (n  =  2095) showed that there was a > 2-fold risk of 
ASDs in mothers who had a diagnosis of allergies or asthma 
during the second trimester of pregnancy  [103] . In one study 
of families of autistic patients (n  =  61) and healthy controls 
(n  =  61), almost 50% of autistic patients had two or three 
family members with autoimmune diseases as compared to 
26% of controls; however, there was no increased incidence 
of allergies  [104] . 

 Mast cells are crucial for allergic reactions  [105]  but are also 
important in both innate and acquired immunity  [106,107] , as 
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  Table 3     . Allergic symptoms and autistic spectrum 
disorders.   

 Evidence  Ref. 

In a nested control study, there was over 2-fold 
higher risk of children with ASDs (n  =  407) born to 
mothers with diagnosis of allergies or asthma during 
the second trimester of pregnancy as compared to 
controls (n  =  2095)

 [103] 

ASD children had a signifi cant family history of 
atopy (30%) as compared to controls (2.5%)

 [104] 

ASD children had at least one manifestation of 
allergy and 50% of ASD children may have two 
or more symptoms

 [95] 

In a National Survey of Children’s Health, parents 
of autistic children reported symptoms of allergies 
more often than other children, with food allergies 
showing the greatest difference

 [5] 

Non-IgE-mediated food intolerance was signifi cantly 
more common in ASD children (n  =  133) than 
controls (n  =  81)

 [75] 

A study of 362 ASD patients in Italy showed 
that the strongest association was with history 
of allergies

 [74] 

Serum levels of IgG4, associated with atopic 
phenotype, were increased in children with 
autism disorder

 [49] 

ASD and mastocytosis children share common 
symptoms such as atopic dermatitis, food intolerance, 
anxiety, ‘brain fog’, and neurobehavioral problems

 [97] 

The prevalence of ASDs in children with mastocytosis 
appears to be 10-fold higher than the general 
population

 [101] 

   ASD: Autistic spectrum disorder; Ig: Immunoglobulin.   

  Box 1     . Mast-cell triggers relevant to autistic 
spectrum disorders.   

Allergens  
Antibody-free light chains  
Bacteria (TLR 2 and 4)  
CRH  
Mercury  
NT  
Opioids  
IL-1  
IL-33  
ROS  
SP  
Toxins  
VIP  
Viruses (TLR 3, 5, 7, and 9)

   CRH: Corticotropin-releasing hormone; IL: Interleukin; NT: Neurotensin; 
ROS: Reactive oxygen species; SP: Substance P; TLR: Toll-like receptors; 
VIP: Vasoactive intestinal peptide.   

well as in inflammation  [108] . Functional mast-cell–neuron 
interactions occur in the brain  [109,110]  and the GI tract  [111] . 
In addition to allergic stimulation  [112] , many other sub-
stances originating in the gut or the brain can trigger mast-
cell secretion ( Figure 1 )  [105] . These include ( Box 1 ) 
immunoglobulin-free light chains  [113] ; bacterial and viral 
products; and neuropeptides such as corticotropin-releasing 
hormone (CRH), myelin basic protein (MBP)  [114] , neuro-
tensin (NT)  [115] , substance P (SP)  [116] , and vasoactive intes-
tinal peptide (VIP)  [117] . Oxidative stress can also trigger or 
augment mast-cell activation  [118] . Our recent evidence also 
indicates that mercuric chloride and thimerosal (100 nM) 
can induce the release of vascular endothelial growth factor 
(VEGF) from human mast cells  [119] . Thimerosal had previ-
ously been shown to induce platelet aggregation with subse-
quent serotonin and prostaglandin release  [120] , and to 
enhance the allergic stimulation of human basophils  [121] . 
Such findings might be relevant to the recent report that 
patients with severe ASDs had evidence of significantly 
increased urinary porphyrins consistent with mercury intoxi-
cation  [36] . Mast cells can also interact with T cells  [107,122,123]  
and superactivate these through TNF  [114] . Once activated, 
mast cells secrete numerous vasoactive, neurosensitizing and 
proinflammatory molecules that are relevant to ASDs. These 
include histamine, serotonin, kinins, proteases, VEGF, MCP-1, 
MIF, and prostaglandin D 2  (PGD 2 ), as well as cytokines, 
such as IL-6, IL-8, IL-9, IL-13, IL-17, and TNF, which are 
known to increase permeability of the BBB  [65,66] . 

 In view of the fact that allergy symptoms in a subgroup 
of ASD patients do not appear to be triggered by IgE, it is 
noteworthy that mast cells can be stimulated by nonallergic 
triggers to release some mediators ‘selectively’, without 
degranulation ( Table 4 )  [124] . It was first shown that mast cells 
could release serotonin without histamine  [125] . Activation of 
Toll-like receptors (TLR) by microorganisms also leads to mast-cell 
release of different cytokines  [126] . For instance, bacterial 
LPS activates TLR-4 and induces selective release of TNF 
from rodent mast cells  [127,128] . Fetal rat-skin-derived mast cells 
express viral TLR-3, activation of which by double-stranded RNA 
induces release of TNF and IL-6, as well as regulating upon 
activation, normal T-cell expressed and secreted (RANTES) 
and macrophage inflammatory protein (MIP), but without 
degranulation  [129] . Activation of TLR-9 selectively produced 
IL-6  [130] . The ability of viruses to trigger mast-cell activation 
could contribute to the pathogenesis of ASDs, as they affect 
children at the critical age of 3 – 5 years  [131] . It is therefore 
interesting that a number of rotaviruses were isolated from 
asymptomatic neonates  [132] . Enteroviruses could also induce 
seizures  [133] , which are reported more often in children with 
ASDs  [134] , and mastocytosis  [135] . 

 IL-1 can stimulate human mast cells to selectively release 
IL-6  [136] , whereas CRH could stimulate selective release of 
VEGF  [137] . Release of IL-6 could have profound effects on 
brain function  [138] , whereas the release of VEGF could 
increase BBB permeability  [139] .  
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Blood
vessel

Mast cell 

Mast-cell-derived
vasoactive mediators:
Bradykinin, histamine, IL-6,
nitric oxide, tryptase, VEGF,
VIP 

Increased gut–blood–brain
barrier permeability 

Mast-cell-derived cytokines
and other neurotoxic
mediators:
IL-1, IL-6, IL-8, IL-13, IL-32,
MCP-1, PGD2, serotonin,
TNF 

Intestine-originating mast-cell triggers:
Bradykinin, casein, gluten, IL-1, mercury,
NT, rotavirus, SP, VIP

Gut

CNS-originating mast-cell
activation triggers:
CRH, MBP, NT, SP 

Brain inflammation

Brain

Autism

  Figure 1     . Schematic depiction of the proposed role of mast cells in gut–blood–brain barrier disruption, brain infl ammation, 
and autistic spectrum disorders.  Intestinal-derived mast-cell triggers such as neuropeptides, stress hormones, and toxins stimulate 
mast cells to release infl ammatory and vasoactive molecules that disrupt the gut–blood–brain barrier, permitting entry of enterotoxic 
molecules in the brain. Neurogenic infl ammation through the release of mast-cell mediators intensifi es and propagates this response.    
   CNS: Central nervous system; CRH: Corticotropin-releasing hormone; IL: Interleukin; MBP: Myelin basic protein; MCP-1: Macrophage chemoattractant protein-1; 
NT: Neurotensin; PGD 2 : Prostaglandin D2; SP: Substance P; TNF: Tumor necrosis factor; VEGF: Vascular endothelial growth factor; VIP: Vasoactive intestinal peptide.   

  Table 4     . Triggers inducing selective release of 
ASD-relevant mast-cell mediators.   

 Trigger  Mediator released 

CRH VEGF

IL-1 IL-6

IL-33 IL-13

LPS TNF

SCF IL-6

TLR-9 IL-6

   CRH: Corticotropin-releasing hormone; IL: Interleukin; LPS: Lipopolysaccharide; 
SCF: Stem cell factor; TLR: Toll-like receptors; TNF: Tumor necrosis factor; 
VEGF: Vascular endothelial growth factor.   

  1.5   Stress, the blood–brain barrier, mast cells, and 
brain infl ammation 
 Anxiety is one of the most common presenting problems for 
at least a subgroup of children with ASDs, who may also be 
more prone to stress  [140] . A comparison of 34 adults with 
autism and 20 controls – matched for age, gender and intellec-
tual ability – showed that patients were three times as anxious as 
controls and were significantly less likely to cope with stressful 
triggers  [141] . Autistic patients might also have increased activ-
ity of the hypothalamic–pituitary–adrenal (HPA), as indicated 
by elevated salivary cortisol response in children  [142] , and 
higher plasma levels of adrenocorticotropin hormone (ACTH) 
in adults with Asperger’s syndrome  [143] . 

 Increased anxiety and aggression might be related to 
significantly increased plasma levels of testosterone and 
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dehydroepiandrosterone (DHEA)  [144] , as well as to serum 
levels of free testosterone (214%) and DHEA (192%) in 
patients with ASDs (n  =  70) in comparison with con-
trols  [145] . Acute stress could activate brain mast cells  [146] , 
an effect that was abolished by pretreatment with poly-
clonal antiserum to CRH  [146] . Subsequently, CRH was 
reported to activate brain mast cells and increase BBB per-
meability in rodents  [147] , particularly in brain areas con-
taining mast cells  [148] . Mast cells were hypothesized to 
regulate permeability of BBB almost 20 years ago  [149] . It 
was later shown that increased BBB permeability in animal 
models occurred in response to the mast-cell secretogogue 
compound 48/80  [150] . The direct effect of CRH was doc-
umented by intradermal administration leading to increased 
vascular permeability in rodents  [151]  and humans  [152] , 
through activation of CRH receptor-1 (CRH-R1). In fact, 
normal human cultured mast cells express high-affinity 
CRH-R1, activation of which leads to selective release of 
VEGF, which is also vasoactive  [137] . The most common 
manifestation of mastocytosis is urticaria pigmentosa (UP), 
which is characterized by small brown–red maculopapules 
on the skin  [153] . It is interesting that lesional skin mast 
cells from a patient whose UP worsened dramatically after 
stress expressed CRH-R1 and had high serum levels of 
CRH  [154] , suggesting that mast cells might respond to local 
release of CRH typically secreted from the hypothalamus 
under stress. 

 Acute restraint stress in rodents also stimulated intestinal 
mast cells, and flattened villi, consistent with increased gut 
permeability  [155] . Acute stress through CRH and mast-cell 
activation induced mucin release in the intestines  [156] , and 
CRH was involved in intestinal inflammation  [157]  and motil-
ity  [158] . In fact, CRH increased permeability in normal human 
colonic biopsies through activation of subepithelial mast 
cells  [159] . Gonadotropin-releasing hormone (GnRH) agonists 
may be useful because they block CRH-induced anxiety and 
stress-induced behaviors in mice through a sex-steroid-indepen-
dent mechanism  [160,161] . Neonatal maternal deprivation 
(NMD) increased gut paracellular permeability through CRH 
stimulating intestinal mast cells  [162] . NMD stress in rats 
induced long-term alterations of colonic nerve–mast-cell inter-
actions  [163] . Moreover, stress of caregivers during 6- to 
18-month-old children was significantly associated with higher 
serum IgE and TNF, as well as with a predisposition to atopic 
symptomatology in these children  [164] . Aberrant, dysfunctional, 
or immature development of the gut–blood barrier  [165]  could 
expose local mast cells to intestinal triggers leading to release of 
mast-cell-derived vasoactive, inflammatory, and neurosensitizing 
molecules that could contribute to brain inflammation and 
ASD-like behavior ( Figure 1 ).   

  2.   Treatment 

 Unfortunately, there are no approved effective treatments for 
autism  [166,167] . Most behavioral  [168]  or pharmacological  [169,170]  

treatments do not address the core symptoms of ASDs. One 
paper reviewed all randomized, controlled, clinical trials of 
pharmacological interventions and concluded that no treat-
ment met the criteria for even ‘probably efficacious’  [167] . 
A recent paper reviewed all studies conducted in children with 
ASDs and concluded that there was minimal success in treat-
ing the core deficits; only risperidone has been approved for 
use in children  [171] . It has been estimated that psychotropic 
drug treatments for outpatient children and adolescents with 
ASDs range from 25 to 55% ( Table 5 )  [172-174] . 

 A recent paper reported that the use of psychotropic pre-
scriptions for children with ASDs increased from 39% in the 
period 1996 – 2000 to 79% for the period 2001 – 2005  [174] . 
The mean number of psychotropic drug classes prescribed was 
2.4, raising concerns of long-term safety  [174] . The efficacy of 
antidepressants varies significantly in ASDs  [175,176] . Novel tar-
gets and medications are needed for effective treatment of the 
core symptoms of ASDs. 

  2.1   Antipsychotics 
 Almost 20% of ASD children are prescribed some antipsy-
chotic drug  [171,174,177] . These drugs  [178] , especially the 
newer atypical compounds  [179,180] , are used often in ASDs, 
mostly to control irritability and stereotypic – sometimes 
self-injurious – behavior  [178-182] . Such drugs include halo-
peridol, risperidone, and olanzapine ( Table 5 ). A recent 
review discussed 21 randomized, placebo-controlled trials 
using psychopharmacologic agents; of the various drugs 
used, only methylphenidate  [183]  for aggressive behavior, and 
risperidone for hyperactivity  [184,185]  produced significant 
improvement in more than one study  [182] . Haloperidol is 
limited by tardive dyskinesia, and risperidone by consider-
able weight gain  [177] . Long-term safety with all of these 
drugs remains unknown. Interestingly, some of the older 
antipsychotics used in ASDs  [177,181]  also have antiserotonergic 
and mast-cell-blocking effects  [186] .  

  2.2   Serotonin receptor antagonists 
 The combined histamine-1 and serotonin receptor (5-HT 2 ) 
antagonist, cyproheptadine, produced significant improve-
ment over that of the antipsychotic haloperidol in a double-
blind trial of 40 children with autism, who were randomized 
to either haloperidol and cyproheptadine vs haloperidol and 
placebo  [187] . The apparent benefit of cyproheptadine may be 
related to the higher platelet serotonin levels reported in over 
40% of patients with autism  [188] . Although high platelet 
serotonin might not reflect availability in the brain, it could 
affect the neuroenteric plexus that utilizes serotonin  [189] .  

  2.3   Alternative and nutritional interventions 
 Patients with ASDs are commonly placed in a variety of 
nutritional regiments  [190] . Although many studies have used 
omega-3 fatty acids, vitamins, zinc, and various herbal 
extracts, as well as avoidance of certain food substances  [190,191] , 
they lacked appropriate controls  [191,192] . Moreover, most 
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studies were open label, not controlled, and did not include 
sufficient number of patients.  

  2.4   Antioxidant and anti-infl ammatory agents 
 A recent open-label study reported significant reversal in 
indexes of oxidative stress as evidenced by increased serum 
levels of cysteine and glutathione in 40 children with ASDs 
treated for 3 months with methyl B 12  and folinic acid  [193] . 

 Some naturally occurring flavonoids, such as quercetin 
and the closely structurally related luteolin, have potent 
antioxidant and anti-inflammatory activity  [194] ; they also 
reduce platelet serotonin secretion  [195] . Luteolin also inhib-
its IL-6 release from microglia cells  [196]  and the IL-1-mediated 
release of IL-6, IL-8, and MCP-1 from astrocytes  [197] . Quer-
cetin also inhibited and reversed acute stress-induced autistic-
like behavior and the associated reduced brain glutathione 
levels in mice  [198] . 

 Quercetin and luteolin can also inhibit the release of his-
tamine, leukotrienes, and PGD 2   [199] , as well as IL-6, IL-8, 
TNF, and tryptase from human cultured mast cells  [200] . 
Moreover, quercetin inhibits mast-cell activation stimu-
lated by IL-1  [201] , and mast-cell-dependent stimulation of 
activated T cells  [114] . 

 Quercetin is safe  [202]  but flavonoids are difficult to absorb 
in powder form and are extensively metabolized  [194] , mostly 
through glucuronidation ( ∼  50%), sulfation ( ∼  30%), and 
some methylation  [203,204] . A unique dietary formulation, 
NeuroProtek ®  ( Table 6 ), largely overcomes the problem of 
absorption by combining the natural lipophilic flavonoids 
(luteolin and quercetin) in olive kernel extract to increase 
absorption and minimize metabolism in order to get to the 
brain and inhibit inflammation. Chondroitin sulfate is 
included to correct any intestinal barrier disruption, which 
was recently shown to be associated with decreased levels of 
the structurally related heparan sulfate  [92,93] . Chondroitin 
sulfate also inhibits GI mucosal damage due to acute 
stress  [155]  and histamine release from mast cells  [205] . 

 Disodium cromoglycate (cromolyn) is a potent inhibitor 
of rodent mast-cell histamine secretion, but weak inhibitor of 
human mast cells  [105] . Nevertheless, it is often used to treat 
GI symptoms in mastocytosis patients  [153] . The histamine-1 
receptor antagonist ketotifen has been reported to also par-
tially inhibit mast-cell activation and is often used for treat-
ing symptoms associated with mastocytosis  [153] . A newer 
histamine-1 receptor antagonist, rupatadine, available in 
Europe and Latin America but not yet in the USA, also 
inhibits mast-cell release of inflammation mediators  [206] . 
These drugs may be more appropriate for the subgroup of 
ASD patients with allergic symptoms ( Table 6 ). 

 The opioid receptor antagonist naltrexone was used in a 
number of studies and had some benefit, mostly in reducing 
self-injurious behavior  [207] . Naltrexone’s beneficial effect 
may be partially related to blockade of mast cell activation 
by internal opioids  [208] .   

  3.   Expert opinion 

 Much useful evidence has been produced over the last few 
years on ASDs  [209] , but we now need to move from infor-
mational to transformational research if we are to develop 
novel effective treatments. Increased effort should be directed 
at understanding what might contribute to the pathogenesis 
of autism, rather than the neurological sequellae. Mast cells 
and CRH are involved in the regulation of BBB pathophysi-
ology  [139]  and inflammation  [105] . Enteroviruses, neuropep-
tides, stress hormones, and toxins could contribute through 
mast-cell activation, especially in subpopulations that are 
made vulnerable by their age and genetic make-up. 

 Some of the most apparent problems in the studies reviewed 
were: the widely ranging ages, the severity and duration of 
ASDs, the heterogeneity of types of ASDs, lack of appropriate 
power, lack of objective end points, and lack of easy-to-use, 
validated, post-treatment follow-up instruments. Major efforts 
should be directed at testing novel pathogenetic hypotheses 

  Table 5     . Psychotropic agents showing most benefi t in autistic spectrum disorders.   

 Drug  Actions  Results  Adverse effects  Ref. 

Cyproheptadine + Serotonin and histamine-1 
receptor antagonist

Symptoms  ↓ Sedation, weight  ↑  [187] 

Haloperidol Dopamine receptor antagonist Repetitive behavior  ↓ Tardive dyskinesia  [177] 

Methylphenidate Central nervous system 
stimulant

Hyperactivity  ↓  [182,183] 

Naltrexone Opioid receptor Self-injuries  ↓ Sedation, transient  [207] 

Olanzapine Dopamine and serotonin 
receptor antagonist

Symptoms  ↓ Weight  ↑  [177,180] 

Risperidone Dopamine receptor antagonist Aggression  ↓  Irritability  ↓ Weight  ↑  [183-185] 

    +  with or without haloperidol;  ↓  decrease;  ↑  increase.   
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with defined objective end points that may subsequently be 
used in clinical trials. 

  3.1   Notes in press 
 In spite of the fact that antidepressants are increasingly pre-
scribed to children with ASDs as discussed earlier (Section 2), 
a recent, multicenter, randomized study of 150 children and 
adolescents using the selective serotonin re-uptake inhibitor 
(SSRI) citalopram or placebo for 12 weeks, reported no benefit 
and significant adverse effects  [214] . An accompanying editorial 
justifiably concluded that “perhaps this evidence will change 
this practice” of widely prescribing SSRIs to children with 
ASDs  [215] .  

  3.2   The future 
 Areas for future research could include:   

 Expression – in peripheral lymphocytes from patients with • 
ASDs – of proteins, such as moesin  [210]  and the mitochon-
drial uncoupling protein 2 (UCP2)  [211]  recently shown to 
have an inverse relationship to immune activation. Low 
UCP2 expression may also be related to recent evidence 
of mitochondrial dysfunctions in patients with ASDs  [213] .   
 Reactivity of circulating basophils from patients with ASDs • 
to environmental pollutants and toxins.   
 Investigation of ASD patient heterogeneity based on allergic • 
symptomatology, with the radio-allergo-sorbent test (RAST) 
and skin tests, as well as serum levels of mast-cell triggers 
and mediators.   
 Blood levels of mast-cell triggers and mediators in groups of • 
patients with ASDs (e.g., different age groups, with and 
without allergies).   
 Blood levels of CRH, endorphins, and key neuropeptides in • 
subgroups of ASD patients.   
 Blood levels of CRH and other mast-cell triggers and medi-• 
ators in premature infants with follow-up of how many will 
develop ASDs.   
 Epidemiologic study of ASDs in patients with mastocytosis.   • 

 Evidence of BBB disruption in ASD patients using • 
gadolinum-enhanced magnetic resonance imaging, as 
already done successfully in patients with multiple sclerosis.   
 Evidence of intestinal barrier disruption in ASD patients • 
by measuring blood levels of heparan sulfate, chondroitin 
sulfate, and zonulin.   
 Human mast-cell and basophil activation by microbial, stress • 
and toxic triggers, with and without allergic stimulation.   
 The effect of microbial, stress hormones, and toxic triggers on • 
gut–blood–brain permeability in mice, including appropriate 
knockout mice.   
 Double-blind clinical trial of the effect of the fl avonoid-• 
containing formulation NeuroProtek ®  in patients with ASDs.              
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  Table 6     . Suggested regimens for autistic spectrum disorder patients with allergic symptomatology*.   

 Drug/formulation  Actions  Suggested dose  Ref. 

Disodium cromoglycate 
(Gastrocrom ® )

‘Mast cell stabilizer’ 100 – 400 mg/day dissolved 
in water

 [153] 

Cyproheptadine (Periactin ® ) Serotonin and histamine-1 
receptor antagonist

1 – 4 mg/day  [187] 

Ketotifen (Zaditen ® ) Histamine-1 receptor antagonist, 
anti-eosinophil

1 – 4 mg/day  [212] 

Rupatadine (Rupafi n ® ) Histamine-1 receptor and platelet 
activating factor antagonist; 
mast cell inhibitor, anti-eosinophil

20 mg/day  [206] 

NeuroProtek ® Contains fl avonoids and a proteoglycan Two capsules/20 kg body 
weight/day

 [155,196,197,199,200] 

   *Doses will vary depending on age and weight of patient.   
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