Dysregulated brain immunity and neurotrophin signaling in Rett syndrome and autism spectrum disorders

Theoharis C. Theoharides a,b,c,d,⁎, Marianna Athanassiou a, Smaro Panagiotidou a, Robert Doyle e,f

a Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, USA
b Department of Internal Medicine, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, USA
c Tufts Medical Center, Boston, MA, USA
d Department of Psychiatry, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, USA
e Pediatric Psychopharmacology Unit, Massachusetts General Hospital, Boston MA, USA
f Harvard Medical School, Boston MA, USA

Abstract

Rett syndrome is a neurodevelopmental disorder, which occurs in about 1:15,000 females and presents with neurologic and communication defects. It is transmitted as an X-linked dominant linked to mutations of the methyl-CpG-binding protein (MeCP2), a gene transcription suppressor, but its definitive pathogenesis is unknown thus hindering development of effective treatments. Almost half of children with Rett syndrome also have behavioral symptoms consistent with those of autism spectrum disorders (ASDs). PubMed was searched (2005–2014) using the terms: allergy, atopy, brain, brain-derived neurotrophic factor (BDNF), corticotropin-releasing hormone (CRH), cytokines, gene mutations, inflammation, mast cells (MCs), microglia, mitochondria, neurotensin (NT), neurotrophins, seizures, stress, and treatment. There are a number of intriguing differences and similarities between Rett syndrome and ASDs. Rett syndrome occurs in females, while ASDs more often in males, and the former has neurologic disabilities unlike ASDs. There is evidence of dysregulated immune system early in life in both conditions. Lack of microglial phagocytosis and decreased levels of BDNF appear to distinguish Rett syndrome from ASDs, in which there is instead microglia activation and/or proliferation and possibly defective BDNF signaling. Moreover, brain mast cell (MC) activation and focal inflammation may be more prominent in ASDs than Rett syndrome. The flavonoid luteolin blocks microglia and MC activation, provides BDNF-like activity, reverses Rett phenotype in mouse models, and has a significant benefit in children with ASDs. Appropriate formulations of luteolin or other natural molecules may be useful in the treatment of Rett syndrome.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Rett syndrome is a neurodevelopmental condition affecting about 1 per 15,000 females and is characterized by neurologic defects, mental retardation and seizures (Neul et al., 2010; Castro et al., 2013). Even though children with Rett syndrome show severe impairment in language and movement, they still make eye contact. About half of children with Rett syndrome also exhibit symptoms consistent with those of autism spectrum disorders (ASDs), also a neurodevelopmental condition, which affects almost 1/68 children but characterized by deficits in communication and sociability (Fombonne, 2009; Kogan et al., 2009; Volkmar et al., 2009).

In Rett syndrome over 2/3 of cases have been linked to specific sporadic de novo mutations (Matijevic et al., 2009; Matsuishi et al., 2011; Banerjee et al., 2012) affecting the gene for the methyl-CpG-binding protein (MeCP2), which is a general transcriptional repressor (Nguyen et al., 2012; Liu et al., 2012; Ku et al., 2013; Na et al., 2013). In contrast, many gene mutations are associated with higher risk of ASD, but only explain a small percentage of cases (Weiss et al., 2009; Aldinger et al., 2011; Hallmayer et al., 2011; Williams, 2012).

DNA methylation at the C5 position of the cytokine residue of GpC dinucleotides generally leads to gene silencing (Feng and Fan, 2009), especially in the hypothalamus (Chabrour et al., 2008). Some papers have reported specific neuronal gene defects using MeCP2 null mice (Urdinguio et al., 2008), such as abnormal “axonal guidance” (Degano et al., 2009). Loss of MeCP2 also resulted in decreased production of biogenic amines (Samaco et al., 2009). However, it is still not known how the loss of the MeCP2 protein leads to the neurologic or other symptoms (Blackman et al., 2012).

Patients with Rett syndrome often have seizures, but those with ASDs have a number of other comorbidities including allergies, gastrointestinal symptoms and seizures (Bauman, 2010). There is new evidence that epigenetic regulation contributes significantly to neurodevelopmental and neurodegenerative diseases, Rett syndrome and those with ASDs (Herbert, 2010; Lilja et al., 2013; Rangasamy et al., 2013). We compare and contrast the clinical and pathological findings in Rett syndrome and ASDs (Table 1).

2. Methods

PubMed was searched since 1995 for papers reporting on Rett syndrome and/or ASD and any one of the following terms: allergy, atopy, brain-derived neurotrophic factor (BDNF), corticotropin-releasing hormone (CRH), cytokines, flavonoids, gene mutation, inflammation, mast cells (MCs), mitochondria, neurotransin (NT), phenotype, seizures, stress, subtype, treatment, and therapy. Papers were chosen for relevance, human data, and use of English language. Papers were excluded if they were published as “hypotheses” or if they were repetitive by the same authors.

3. Microglia and neurotrophins

A number of papers have reported altered microglial function in Rett syndrome (Maenza et al., 2011; Derecki et al., 2012; Tsai, 2012; Zachariah et al., 2012; Derecki et al., 2013). In fact, neuron-only expression of normal MeCP2 was not sufficient to reverse the Rett phenotype in mice; instead brain-wide expression was needed suggesting the importance of glia cells, astrocytes or some other brain cell type (Guy et al., 2007; Varela-Saavedra et al., 2007). For instance, astrocytes from Rett syndrome patients can spread MeCP2 deficiency (Maenza et al., 2009). Correction of MeCP2 deficiency in myeloid cells of MeCP2-null mice was sufficient to correct most symptoms associated with Rett phenotype, but strangely only if phagocytic activity of microglia was intact (Derecki et al., 2013). There is also increased glia neurodensity in Rett syndrome suggesting inflammatory astrocytosis (Armstrong, 2005). Microglial–MC interactions are considered important in neuroinflammatory diseases (Skaper et al., 2012). Interestingly, the MC–derived protease tryptase induced microglia activation (S. Zhang et al., 2012).

A neuroinflammatory process (Zimmerman et al., 2005), as evidenced by strong activation of microglia and astroglia, along with increased expression of MCP-1 and tumor necrosis factor (TNF)-α, had been reported in ASDs (Vargas et al., 2005), and has since been confirmed. However, “atypical wiring” may be more important than active inflammatory process (Rodriguez and Kern, 2011; Morgan et al., 2012).

Lack of brain-derived neurotrophic factor (BDNF) has been implicated in many neuropsychiatric diseases (Autry and Monteggia, 2012), including Rett syndrome (Li and Pozzo-Miller, 2014). A number of papers have reported reduced blood and cerebrospinal fluid (CSF) levels of BDNF in patients with Rett syndrome (Katz, 2014), and in a mouse model of Rett syndrome (Schaevitz et al., 2010). In fact, loss of MeCP2 has been correlated with reduced levels of neurotrophic factors including BDNF (Abuhatzira et al., 2007). In contrast, BDNF has been largely found to be elevated in patients with ASDs (Nishimura et al., 2007; Sadakata et al., 2012; Ricci et al., 2013), but this increase may be the result of defective signaling (Correia et al., 2010).

4. Autoimmunity

Increasing reports suggest that Rett syndrome and ASDs may have some aspects of immune dysfunction (Derecki et al., 2010). ASDs in particular have been considered having an autoimmune (Ashwood and Van de Water, 2004; Gesundheit et al., 2013; Theoharides et al., 2013) and having some neuroimmune component (Theoharides et al., 2009). MeCP2 has been shown to be an autoantigen associated with increased susceptibility to systemic lupus erythematosus (Webb et al., 2009). Autoantibodies against the brain have been reported in the serum of Rett syndrome patients (Klunshnik et al., 2001). In the case of ASDs, 30% of patients had elevated antibody levels directed against the cerebellum (Wills et al., 2009; Rossi et al., 2011; Braunischweig and Van de Water, 2012). The Autism Phenome Project reported that 42% of 3 year old children with ASDs had plasma antibodies against

Table 1

Differences and similarities between Rett syndrome and ASDs.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Rett syndrome</th>
<th>ASDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present in females</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>More common in males</td>
<td>±</td>
<td>+</td>
</tr>
<tr>
<td>Neurologic symptoms</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Behavioral symptoms</td>
<td>±</td>
<td>+</td>
</tr>
<tr>
<td>Eye contact</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Decreased microglia phagocytosis</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Microglia activation/proliferation</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Neurotrophins (BDNF)</td>
<td>†-</td>
<td>† but defective signaling</td>
</tr>
<tr>
<td>MeCP2 mutation</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Mitochondrial dysfunction</td>
<td>±</td>
<td>+</td>
</tr>
<tr>
<td>Brain autoantibodies</td>
<td>±</td>
<td>-</td>
</tr>
<tr>
<td>Brain inflammation</td>
<td>±</td>
<td>+</td>
</tr>
<tr>
<td>Seizures</td>
<td>±</td>
<td>+</td>
</tr>
<tr>
<td>Allergies/food intolerance</td>
<td>+</td>
<td>±</td>
</tr>
<tr>
<td>Gastrointestinal symptoms</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>
GABAergic cerebellar neuron proteins (Rossi et al., 2011). The Autism Genetic Resource Exchange reported 8.8% prevalence of anti-brain of antibodies in the mothers of these families, 53% of whom also had also the presence of anti-nuclear autoantibodies and also had autoimmune diseases such as rheumatoid arthritis and systemic lupus (Brimberg et al., 2013). A large study conducted in Italy with autistic children (n = 355), their unaffected siblings (n = 142) and their mothers (n = 333) reported that the presence of anti-brain antibodies in neither the patient nor the mother did not indicate increased risk of autism; however, the presence of 45 kDa and 62 kDa were correlated with autism severity (Piras et al., 2014). Another study reported increased levels of anti-phospholipid antibodies in patients with ASDs and the levels were evidently associated with more impaired behaviors as reported by parents (Careaga et al., 2013). Finally, a recent paper described the existence of autoantibodies against human neuronal progenitor cells suggesting an impaired tolerance to neural antigens in ASDs (Mazur-Kolecka et al., 2014).

One paper described that the only statistically significant correlation with the presence of brain autoantibodies in patients with ASDs was with allergic symptoms (Mostafa and Al-Ayadhi, 2013).

5. Allergies and food intolerance

One large epidemiological study reported a strong correlation between eczema and both attention deficit hyperactivity disorder (ADHD) and ASDs (Yaghaie et al., 2013). Many patients with ASDs suffer from food allergies (Jyonouchi, 2010) and “allergic-like” symptoms (Angelidou et al., 2011), suggesting MC activation (Theoharides et al., 2012a; A. Theoharides, 2013; T.C. Theoharides, 2013). Moreover, children with mastocytosis, a spectrum of diseases characterized by increased levels of activated MCs, who present with allergies, hyperactivity and difficulty focusing (“brain fog”) (Akin et al., 2010; Petra et al., 2014), appear to have a 5-fold higher chance of developing ASDs (1/10 children) than the general population (1/68 children) (Theoharides, 2009). In fact, mastocytosis patients have unusually frequent neurologic (Smith et al., 2011) and psychiatric (Moura et al., 2014) symptoms.

MCs participate in allergies, innate and acquired immunity (Rottem and Mekori, 2005; Galli et al., 2008), as well as in inflammation (Theoharides et al., 2010a). They are also responsible for eliciting neutrophil infiltration that promotes autoimmunity (Walker et al., 2012). MCs are considered the “immune gate to the brain” and their richest source is the hypothalamus and cerebellum (Theoharides, 1990). MC-derived IL-6 and TGFβ are also critical for the development of Th-17 cells (Nakae et al., 2007; Suurmond et al., 2011) primarily responsible for autoimmune and MCs secrete IL-17, themselves (Nakae et al., 2007). Brain MCs produce TNF and they are the only cell type that stores pre-formed TNF in secretory granules from which it can be released rapidly (B. Zhang et al., 2012b).

Surprisingly MCs could also have immunoregulatory actions (Voehringer, 2013) possibly because of their ability to secrete specific mediators selectively without degranulation (Theoharides et al., 2007). The state of MC activation could also be determined by other molecules, such as IL-33, which augments the ability of substance P (SP) to stimulate release of VEGF (Theoharides et al., 2010b), while CRH augments the ability of NT to release VEGF from MCs (Donelan et al., 2006).

6. Focal brain inflammation

Neuropsychiatric disorders have been characterized by brain gene clusters associated with increased inflammation and mitochondrial defects (Theoharides et al., 2011). Lymphocyte function has been reported to be affected in Rett syndrome (Delgado et al., 2006). TNF levels were increased in the CSF (Zimmerman et al., 2005; Li et al., 2009) and IL-6 expression was elevated in the brains of patients with ASDs (Li et al., 2009). Maternal immune activation (MIA) in mice led to increased IL-6 (Dahlgren et al., 2006; Smith et al., 2007) and contributed to immune deregulation and behaviors in the offspring that were reminiscent of autism (Hsiao et al., 2012). Interestingly, mastocytosis patients have high serum IL-6 levels (Theoharides et al., 2002) and MCs can release IL-6 selectively (Kandere-Grzybowska et al., 2003). Substances originating in the gut or the brain can trigger MCs to release mediators that could disrupt the blood–brain barrier (BBB) (Theoharides and Doyle, 2008) and cause “focal encephalitis” in specific brain areas, thus contributing to the pathogenesis of ASDs (Theoharides et al., 2008; A. Theoharides, 2013; T.C. Theoharides, 2013).

Patients with ASDs are prone to stress (Gillott and Standen, 2007) and prenatal stress has been linked to increased risk of ASDs (Beversdorf et al., 2005; Ronald et al., 2010). Stress activates brain MCs leading to BBB disruption (Esposito et al., 2002) that contributes to brain inflammation, as amply documented in multiple sclerosis (MS) (Karagkouni et al., 2013). CRH and NT, secreted under stress, synergistically stimulate MCs, leading to secretion of VEGF (Cao et al., 2005), increase vascular permeability (Donelan et al., 2006) and lead to BBB disruption (Theoharides and Konstantinidou, 2007); NT is a brain peptide (also found in the gut) involved in inflammation (Mustain et al., 2011). NT is neurotoxic (Chanzisadeh, 2010) and can facilitate N-methyl-D-aspartate (NMDA)-induced excitation of cortical neurons (Antonelli et al., 2004); NT also induces expression of CRH receptor-1 (CRHR-1) (B. Zhang et al., 2012a), activation of which by CRH increases allergic stimulation of human MCs (Asadi and Theoharides, 2012).

We first reported that NT is increased in the serum of 3-year old children with autism (Angelidou et al., 2010). We also recently reported that both NT and CRH are increased in the serum of children (6–12 years old) with ASDs (Tsilioti et al., 2014). It is, therefore, of interest that high serum CRH and CRH-receptor-positive MCs were reported in a mastocytosis patient whose symptoms worsened with stress (Theoharides et al., in press).

Rett syndrome has been linked to brain mitochondrial abnormalities that have also been reported in about 30% of patients with ASD (Rossignol and Frye, 2012). Mitochondrial dysfunction has been connected to oxidative stress and inflammation in ASDs (Rossignol and Frye, 2014). ATP and mitochondrial DNA could contribute to the pathogenesis of ASDs through stimulation of different processes. We showed that MC activation leads to mitochondrial translocation to the cell surface (Zhang et al., 2011) and secretion of mitochondrial ATP and DNA (Zhang et al., 2012a). These extracellular mitochondrial components augmented MC activation and allergies (Asadi and Theoharides, 2012) because they are mistaken by the body as “innate pathogens” and induce a strong auto-inflammatory response (Theoharides, 2013). In fact, mtDNA was reported to be directly neurotoxic and alter behavior in mice (Lauritzen et al., 2010). MCs express Toll-like receptors (TLR) including TLR9 that can be activated by bacterial and viral DNA sequences, leading to the release of different cytokines that allow MCs to participate in immunity against bacteria (Abraham and St John, 2010). Extracellular ATP has been proposed to act as a universal “alarm” signal released from cells under stress and capable of affecting neighboring cells (Corriden and Insell, 2010). We showed that mitochondrial DNA was high in serum of young autistic children (Zhang et al., 2010).

One would have to invoke that inflammation occurs perinatally in different brain regions (Angelidou et al., 2012) (Fig. 1). Mast cells are located perivascularly at the BBB especially in the cerebellum and hypothalamus close to microglia and nerve endings. Absence of MeCP2 and reduced BDNF levels could lead to Rett syndrome. Instead, MC–microglia activation and focal brain inflammation could contribute to ASDs, while MC–cell activation and T cell recruitment could contribute to the pathogenesis of MS. Nevertheless, T cells may have a regulatory role in the central nervous system(CNS) (Walsh et al., 2014b) as they may benefit injured CNS tissues (Walsh et al., 2014a).
7. Possible novel treatment options

The US Center for Disease Control (CDC) found that 20% of children in the US suffer from a mental disorder with an approximate aggregate cost of $250 billion per year (Yaghmaie et al., 2013). To make matters worse, there are no effective therapies for the core symptoms of either Rett syndrome (Banerjee et al., 2012; Castro et al., 2013) or ASDs (Theoharides et al., 2008, 2009). The flavonoid 7,8-dihydroxyflavone was reported to mimic the activity of BDNF (Jang et al., 2010) and was beneficial in a mouse model of Rett syndrome (Tsai, 2012; Johnson et al., 2012). The related flavonoids 4′-methoxyflavone and 3′,4′-dimethoxyflavone were shown to be neuroprotective (Fatokun et al., 2013). These flavonoids are closely related structurally to luteolin (5,7,3′,5′-tetrahydroxyflavone), which inhibited autism-like behavior in a maternal immune mouse model (Parker-Athill et al., 2009). Moreover, a luteolin containing formulation was recently reported to significantly improve sociability in children with ASDs (Theoharides et al., 2012b; Taliou et al., 2013).

Luteolin has potent antioxidant, anti-inflammatory (Middleton et al., 2000) and MC inhibitory activity (Kimata et al., 2000; Weng et al., 2014, in press). In addition, luteolin inhibits microglial IL-6 release (Jang et al., 2008), MC-dependent stimulation of activated T cells (Kempuraj et al., 2008; Theoharides et al., 2012b; Taliou et al., 2013) and mercury-induced MC activation (Asadi and Theoharides, 2012). Given the methylation defect present in Rett syndrome, the possible use of tetramethoxyluteolin should be particularly appealing, especially since we recently reported that it is a more potent MC inhibitor than luteolin (Weng et al., 2014, in press) and methylated flavonoids are also less metabolized (Walle, 2007). Even though these flavonoids are not specific, they are generally considered safe (Harwood et al., 2007). In fact, flavonoids, have been considered as therapeutic options for brain disorders (Jager and Saaby, 2011; Jones et al., 2012).

Recent papers reported the potential benefit of the anti-parasitic drug Suramin in the MIA mouse model of autism (Navaux et al., 2013, 2014), and of the natural molecule sulforaphane in adult patients with ASDs, who had been selected because their symptoms improved with high temperature (Singh et al., 2014). It would be interesting to see if these approaches benefit the core symptoms of children with either Rett syndrome or ASDs.

8. Conclusion

The evidence reviewed above indicates that a methylation defect, microglia dysfunction, and focal brain inflammation, along with a lack of neurotrophic factors, may contribute to the pathogenesis of at least subcategories of Rett syndrome. Luteolin and methylated analogues, which also mimic BDNF, may serve as a novel treatment agents.

Disclosures

TCT is the inventor of US patents No. 7906153; No. 8268365 and PCT application No. 13/722,397 for the treatment of neuroinflammatory conditions, as well as US patent applications No. 12/534,571 and No. 13/009,282 for the diagnosis and treatment of ASDs. TCT is also the
inventor of the dietary supplement NeuroProtek®, with US trademark No. 3225924, which was used in two clinical trials discussed above.

Conflicts of interest
There is no conflict of interest.

Authors’ contributions
TCT formulated the hypothesis, wrote most of the manuscript and approved it. MA and SP researched the database and prepared the manuscript. SP drew the figure. RD discussed and corrected the manuscript.

Acknowledgments
The aspects of our work described above were funded in part by NIH grants N538326 and AR47652, as well as the Autism Collaborative, the Autism Research Institute, the Johnson Botsford Johnson Fnd., the National Autism Association, Safe Minds and Theta Biomedical Consulting and Development Co. Inc. (Brookline, MA) to TCT.

References

