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Mast cells are well known for their role in allergic and anaphylactic reactions, as well as their involvement in
acquired and innate immunity. Increasing evidence now implicates mast cells in inflammatory diseases where
they are activated by non-allergic triggers, such as neuropeptides and cytokines, often exerting synergistic
effects as in the case of IL-33 and neurotensin. Mast cells can also release pro-inflammatory mediators
selectively without degranulation. In particular, IL-1 induces selective release of IL-6, while corticotropin-
releasing hormone secreted under stress induces the release of vascular endothelial growth factor. Many
inflammatory diseases involve mast cells in cross-talk with T cells, such as atopic dermatitis, psoriasis and
multiple sclerosis, which all worsen by stress. How mast cell differential responses are regulated is still
unresolved. Preliminary evidence suggests that mitochondrial function and dynamics control mast cell
degranulation, but not selective release. Recent findings also indicate that mast cells have immunomodulatory
properties. Understanding selective release of mediators could explain how mast cells participate in
numerous diverse biologic processes, and how they exert both immunostimulatory and immunosuppressive
actions. Unraveling selectivemast cell secretion could also help develop uniquemast cell inhibitors with novel
therapeutic applications. This article is part of a Special Issue entitled: Mast cells in inflammation.
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1. Introduction

Mast cells derive from distinct precursors in the bone marrow or
other hematopoietic tissues [1,2]. They mature under the influence of
local tissue microenvironmental conditions, through various cyto-
kines such as stem cell factor (SCF) [2,3]. SCF enhances mast cell
degranulation and cytokine production through cross-linking of their
high affinity surface receptors for IgE (FcεRI), even though it does not
induce degranulation on its own [4–7]. Other molecules that promote
mast cell maturation include nerve growth factor (NGF) [8], which
acts via tyrosine kinase receptors (TrkA, B, C), different from the c-kit
activated by SCF [9]. Neurotrophin-3 was also shown to promote
maturation of both fetal mouse skin mast cells [10] and human
intestinal mast cells [11]. Moreover, human mast cells express mRNA
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Table 2
Mast cell mediators.a

Mediators Main pathophysiologic effects

Prestored
Biogenic amines

Histamine Vasodilation, angiogenesis,
mitogenesis, pain

5-Hydroxytryptamine (5-HT, serotonin) Vasoconstriction, pain
Chemokines

IL-8 (CXCL8), MCP-1 (CCL2), MCP-3 (CCL7),
MCP-4, RANTES (CCL5), eotaxin (CCL11)

Chemoattraction and tissue
infiltration of leukocytes

Enzymes
Arylsulfatases Lipid/proteoglycan hydrolysis
Carboxypeptidase A Peptide processing
Chymase Tissue damage, pain, angiotensin

II synthesis
Kinogenases Synthesis of vasodilatory

kinins, pain
Phospholipases Arachidonic acid generation
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and protein for the Trk ligands NGF, brain-derived neurotrophic factor
(BDNF) and neurotrophin-3 [9], suggesting autocrine actions. How-
ever, unlike NGF, which stimulates mast cell degranulation [12],
neurotrophins do not. Mast cell chemoattractants include SCF,
monocyte chemoattractant protein-1 (MCP-1) and the “regulated
upon activation, normal T cell expressed and secreted” (RANTES) [13].
SP is also a potent chemoattractant for human basophils [14].
Depending on their location, stage of maturation or species [15],
mast cells express different types and levels of surface antigens and
receptors, some of which are involved in activation and others in cell
recognition (Table 1) [16].

In addition to IgE and antigen [5], immunoglobulin free light
chains [17,18], anaphylatoxins, hormones and neuropeptides [19,20]
can trigger mast cell secretion [21–23] (Table 2). The latter include
substance (SP) [24], hemokinin [25], neurotensin (NT) [26], NGF
[12,27] which is released under stress [28], and pituitary adenylate
cyclase activating polypeptide (PACAP) [29,30]. Skin mast cells are
Table 1
Mast cell receptors and their agonists.a

Adenosine receptors A2A, A2B, A3 Adenosine
β2-Adrenoreceptor Adrenaline
C3α receptor C3α
C5α receptor C5α
Cannabinoid CB2 receptor 2-Arachidonoyl-glycerol, anandamide
CD47 (=integrin-associated protein, IAP) Integrins
CD200 receptor CD200 (0X2)
Cd300α receptor Eosinophil granule proteins
Chemokine receptors Chemokines

CXCR1–4, CX3 CR1, CCR1, 3–5
CRHR-1, CRHR-2 Corticotropin releasing hormone
Estrogen receptors (A, B) Estrogens
FcαR (CD89) IgA
FcεRI IgE
FcγRI IgG
FcγRIIA IgG
FcγRIIB IgG
FcγRIII IgG
GPR34 Lysophosphatidylserine
GPR92 Lysophosphatidic acid
Histamine receptors H1, H2, H3, H4 Histamine
5-HT1A Serotonin
Kit receptor tyrosine kinase (CD17) Stem cell factor
LPA1, LPA3 Lysophosphatidic acid
Leptin receptor Leptin
Leukotriene receptors 1 and 2 Leukotrienes
MRGX2 Mastoparan, somatostatin, SP
Myeloid-associated Ig-like receptor 1 ?
Neurokinin receptors CGRP, Hemokinin-A, SP, VIP

NK1R, NK2R, NK3R, VPAC2
Neurotensin receptor Neurotensin
Neurotrophin receptors

TrkA NGF
TrkB BDNF
TrkC Neurotrophin 3

Nicotinic acetylcholine receptor Acetylcholine
0X40 0X40-ligand
Protease activated receptors 1–4 Serine proteases (e.g. trypsin, tryptase)
Peripheral benzodiazepine receptor ?
Progesterone receptor Progesterone
Prostaglandin E receptors Prostaglandin E

EP2, EP3, EP4
Purinoreceptors

P2Y1, P2Y12, P2Y13 ADP
P2Y2 ATP, UTP
P2Y11 ATP

Sphingosine-1-phosphate S1P
S1P1, S1P2, S1P5

Toll-like receptors 1–9 Bacterial and viral products
Urokinase receptor Urokinase
Vitamin D receptor Vitamin D

a There are differences in the expression of cell surface receptors between human
and rodent mast cells.

Tryptase Tissue damage, activation of PAR,
inflammation, pain

Matrix metalloproteinases Tissue damage, modification of
cytokines/chemokines

Peptides
Angiogenin Neovascularization
Corticotropin-releasing hormone Inflammation, vasodilation
Endorphins Analgesia
Endothelin Sepsis
Kinins (bradykinin) Inflammation, pain, vasodilation
Leptin Food intake regulator
Renin Angiotensin synthesis
Somatostatin Anti-inflammatory (?)
Substance P Inflammation, pain
Urocortin Inflammation, vasodilation
VEGF Neovascularization, vasodilation
Vasoactive intestinal peptide Vasodilation, mast cell activation

Proteoglycans
Chondroitin sulfate Cartilage synthesis,

anti-inflammatory
Heparin Angiogenesis, nerve growth

factor stabilization
Hyaluronic acid Connective tissue, nerve growth

factor stabilization

De novo synthesized
Cytokines

Interleukins (IL)-1, 2, 3, 4, 5, 6, 8,
9, 10, 13, 16, 18

Inflammation, leukocyte
migration, pain

IFN-α, IFN-β, IFN-γ; MIF; TGFβ;
TNF-α, MIP-1α, MCP-1

Inflammation, leukocyte
proliferation/activation

Growth factors
SCF, GM-CSF, β-FGF, neurotrophin 3,
NGF, PDGF, TGFβ, VEGF

Growth of a variety of cells

Nitric oxide Vasodilation
Phospholipid metabolites

Leukotriene B4 Leukocyte chemotaxis
Leukotriene C4 Vasoconstriction, pain
Platelet activating factor Platelet activation, vasodilation
Prostaglandin D2 Bronchonstriction, pain

β-FGF, β-fibroblast growth factor; GM-CSF, granulocyte monocyte-colony stimulating
factor; IFNγ, interferon-γ; MCP, monocyte chemoattractant protein; MIF, macrophage
inhibitory factor; MIP, macrophage inflammatory protein; NGF, nerve growth factor;
PDGF, platelet-derived growth factor; SCF, stem cell factor; TGFβ, transforming growth
factor β; TNF-α, tumor necrosis factor-α; VEGF, vascular endothelial growth factor.

a There are differences in the expression of mediators between human and rodent
mast cells.
located close to sensory nerve endings and can be triggered by
neuropeptides [21,31], such as NT [26], NGF [12], SP [32], and PACAP
[30] (Fig. 1), which can be released from dermal neurons. In fact, skin
mast cells contain SP [33], while cultured mouse and human mast
cells contain and secrete NGF [34]. Thymic stromal lymphopoietin
(TSLP), released in response to inflammation, pathogens and trauma
[35], also activates mast cells, but only in the presence of interleukin-1
(IL-1) and tumor necrosis factor (TNF) [35,36]. A number of additional



Fig. 1. Schematic representation of physiological and environmental mast cell triggers,
and the inhibitory effect of certain flavonoids, such as luteolin. Many of these triggers
stimulate selective release of mediators such as IL-6, TNF or VEGF without
degranulation. CRH, corticotropin releasing hormone; LPS, lipopolysaccharide; NT,
neurotensin; PACAP, pituitary adenylate cyclase activating polypeptide; PCBs, poly-
chlorinated biphenols; PTH, parathyroid hormone; SP, substance P; VIP, vasoactive
intestinal peptide.

Fig. 2. Schematic representation of mast cell autocrine triggers and modulators.
Numerousmolecules secreted bymast cells can have autocrine actions, either activating
or inhibiting mast cells. CRH, corticotropin-releasing hormone; IL, interleukin; NT,
neurotensin; NO, nitric oxide; ROS, reactive oxygen species; SCF, stem cell factor; SP,
substance P; TGFβ, transforming growth factor β; TSLP, thymic stromal lymphopoietin;
UCP2, uncoupling protein 2.
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immune and infectious triggers (e.g. stimulants of Toll-like receptors,
TLR) can lead to selective release of mast cell mediators (see under
“Selective release” below).

Once activated, mast cells secrete numerous vasoactive and pro-
inflammatory mediators [37–42]. These include pre-formed mole-
cules such as histamine, serotonin, TNF, kinins and proteases stored in
secretory granules. Leukotrienes (LT), prostaglandins and platelet
activated factor (PAF) are synthesized during mast cell activation
from arachidonic acid liberated by the action of phospholipases. In
addition, a number of cytokines (e.g. IL-1, 2, 5, 6, 8, 9, 13, and TNF) and
vascular endothelial growth factor (VEGF) [43] are synthesized de
novo and released several hours after stimulation (Table 2). VEGF is
also released from normal human cultured mast cells selectively in
response to corticotropin-releasing hormone (CRH) [44].

CRH is secreted from the hypothalamus under stress and regulates
the hypothalamic–pituitary–adrenal (HPA) axis [45] through specific
receptors [46]. These include CRHR-1 [47] and CRHR-2 [48], the latter
being subdivided into CRHR-2α and CRHR-2β [49]. All CRHR are
activated by urocortin (Ucn), a peptide with about 50% structural
similarity to CRH [50]. Ucn II [51] and Ucn III [52] are potent selective
CRHR-2 agonists. CRH can also be secreted from immune cells [53]
and mast cells [54]. CRH and related peptides released locally under
stress may regulate mast cell function [55], and the brain–skin
connection [56]. It was recently reported that CRH stimulates
generation of mast cells from human hair follicle precursors [57].

Mature mast cells vary considerably in their cytokine [58] and
proteolytic enzyme content, but their phenotypic expression is not
fixed [59,60]. Mast cells in the presence of SCF produce predominantly
pro-inflammatory cytokines, whereas when used together with SCF
and IL-4, they producemostly Th2 cytokines [61]. For instance, human
umbilical cord-derived mast cells (hCBMCs) primed with IL-4 or IL-5
before stimulation with IgE released more TNF, IL-5, and granulocyte-
macrophage colony-stimulating factor (GM-CSF), compared to
hCBMCs maintained in SCF alone. In contrast, IL-4 enhanced SCF-
dependent mast cell proliferation and shifted IgE-stimulated response
to Th2 cytokines such as IL-3, IL-5 and IL-13, but not IL-6 [62].
Mast cells play an important role in innate or acquired immunity
[63], bacterial infections [64–66], as well as in autoimmunity [67].
Mast cells are also important for maturation of Th17 cells and are
recognized as key cells in autoimmune disorders [68]. For instance,
mast cells in the presence of IL-6 and transforming growth factor β
(TGFβ) are necessary for the production of Th17 cells [69], while TNF
and vasoactive intestinal peptide (VIP) drive IL-6-independent Th17
cell maturation [69–71]. A number of immune molecules also
contribute to mast cell activation. Addition of complement fragment
3a (C3a) led to increased degranulation of human mast cells
stimulated by aggregated IgG [72]. Immunoglobulin-free light chains
elicited immediate hypersensitivity-like reactions [18,73], with
subsequent T cell-mediated immune responses. The antibacterial
peptides, human B-defensins, can activate mast cells and induce
degranulation [74]. In fact, mast cells interact with T cells [75,76] and
superactivate them through TNF, as shown with mouse [77,78] and
human [79,80] mast cells. It was recently shown that T cells release
“microparticles” that stimulate humanmast cell degranulation and IL-
8 release [81]. Mast cells, in turn, secrete heparin “microparticles” that
contain and deliver TNF to lymph nodes [82].

Mast cells, specifically a subset highly expressing both FcεRI and
MHC II [83], can function as antigen presenting cells [84–86].
Basophils can also act as Th2-inducing antigen-presenting cells
[87,88]. Basophils promote Th2 responses [89,90] and co-operate
with dendritic cells for optimal Th2 responses [91]. Moreover,
basophil activation by “autoreactive IgE” induces their “homing” to
lymph nodes, where they promote Th2 cell differentiation and
production of auto-reactive antibodies that contribute to lupus
nephritis [92]. Interestingly, mast cells can act both as positive and
negative modulators of immunity [93]. In addition, mast cells can
coordinate the adaptive immune response by directing migration of
dendritic and T cells to lymph nodes and secreting T cell-polarizing
cytokines [94]. Such regulatory activities of mast cells may stem from
selective release of immunomodulatory molecules that could have
both autocrine and paracrine actions (Fig. 2).

Mast cells also have the unusual ability to be triggered by certain
molecules and then either activate them or degrade them. For
instance, mast cells can act on precursor protein molecules and
generate active peptides [95], such as histamine-releasing peptides
[96] and NT, [97] from plasma. However, mast cells can also degrade
NT [98] and limit its biologic effects [99]. Mast cells can also synthesize
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Fig. 3.Mast cell involvement in inflammatory diseases. Increasing evidence indicates that
mast cells are involved in many diseases. Colors indicate the strength of the association
(red = strongest, white = weakest). CAD, coronary artery disease; IBD, inflammatory
bowel disease; IBS, irritable bowel syndrome.
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endothelin [100], but also release proteases that degrade endothelin
[64]. Finally, mast cells can be activated by snake toxins [101,102],
but also degrade them [103]. Whether these actions will be proven
useful or detrimental obviously depends on the ability of mast
cells to secrete specific mediators selectively in a well-regulated
fashion.
Table 3
Selective release of mast cell mediators.

Stimuli MC type Mediators released Med

Endogenous
CD8 ligands RPMC TNF, NO H
CRH hCBMC VEGF H, t
Endothelin-1 and -3 RMMC TNF, IL-12↑ IL-4
IL-1 hCBMC IL-6, IL-8, TNF H, t
IL-1β RPMC NO PAF
IL-12 P815 IL-13
IL-12 RPMC IFN-γ H
LTC4/LTD4 IL-4-primed hCBMC TNF, MIP-1α, IL-5 H
Monomeric IgE BMMC IL-6 H, L
PGE2 RPMC IL-6 H, T
SCF BMMC IL-6 H, L
SDF hCBMC IL-8 H, G
Thrombin BMMC IL-6 Sero
Urocortin hCBMC IL-6 H, t

Exogenous/pharmacological
Amitriptyline RPMC Serotonin HA
Cholera Toxin RPMC IL-6 HA,
Clostridium difficile Toxin A RPMC TNF HA
CpG DNA BMMC TNF, IL-6 HA,
H. pylori VacA Toxin BMMC IL-6, IL-8, TNF HA
LPS (TLR-4) RPMC IL-6 HA
PMA BMMC VPF/VEGF 5HT
S.a.peptidoglycan (TLR-2) hCBMC HA, IL-1β, RANTES, LTC4 IL-6
Suboptimal FcεRI stimulation BMMC MCP-1, HA low IL-1
Viruses (TLR-3, 5, 9) FSMC TNF, IL-6 HA

BMMC, bone marrow mast cells; CRH, corticotropin-releasing hormone; FSMC, fetal skin-de
histamine; HA, hexosaminidase; hCBMC, human cord blood-derived mast cells; IFN, inte
inflammatory protein; NO, nitric oxide; PAF, platelet activating factor; PMA, phorbol myrista
cells; S.a, Staphylococcus aureus; SCF, stem cell factor; SDF, stromal cell-derived factor; TLR,
2. Inflammatory processes and the role of selective release

Increasing evidence indicates that mast cells are critical for the
pathogenesis of inflammatory diseases [19,20], such as arthritis [104],
atopic dermatitis, psoriasis [105,106], and multiple sclerosis [107]
(Fig. 3). Gene array analysis of human mast cells activated by IgE
showed overexpression of numerous, mostly inflammation-related
genes [108]. Proteases released from mast cells could act on plasma
albumin to generate histamine-releasing peptides [96,109] thatwould
further propagate mast cell activation and inflammation. Proteases
could also stimulate protease-activated receptors (PAR) inducing
microleakage and widespread inflammation [110,111]. However,
unlike allergic reactions, mast cells are rarely seen to degranulate
during inflammatory processes. The only way to explain mast cell
involvement in non-allergic processes would be through “differential”
or “selective” secretion of mediators without degranulation [112].

This ability could occur through different mechanisms: (A) mast
cells can secrete the content of individual granules [113]; (B)mast cells
can secrete some granular contents through a process associated with
ultrastructural alterations of their electron dense granular core
indicative of secretion, but without evidence of degranulation [114],
a process that has been termed “activation” [115], “intragranular
activation” [116] or “piecemeal” degranulation [117] (Table 3, Fig. 4);
(C) mast cells can undergo selective release of specific mediators such
as serotonin without histamine [118]. Selective release of serotonin
occurred through sequestration from secretory granules inside
vesicles containing high affinity serotonin-binding proteins from
which it was released [119]. A somewhat similar process was
reported for eosinophils where it was shown that eotaxin stimulation
induced movement of preformed IL-4 from granules into secretory
vesicles from which it was released [120]. Human mast cells
stimulated by IL-1 selectively released IL-6 without degranulation
through vesicles (40–80 nm) much smaller than the secretory
granules (800–1000 nm) [121]. Selective release of eicosanoids has
also been shown [122–124].
iators NOT released Pathophysiological importance References

T cell interaction [279]
ryptase, IL-8 Inflammation [25]
, IL-10, IL-13↓ Th1 immunity [280]
ryptase Inflammation [92]
, H Inflammation [281]

Host defence against bacteria [282]
Th1 immunity [283]
Non-IgE mediated inflammation [284]

TC4 Mast cell survival [285]
NF Cytoprotection [286]
TC4, TNF Mast cell development [83]
M-CSF, IFN-γ, IL-1β Endothelial transmigration [88]
tonin, TNF Anticlotting [287]
ryptase, IL-8, VEGF Inflammation [288]

Headaches [73]
TNF Inflammation [289]

GI tract inflammation [290]
IL-4, IL-12, GM-CSF, IFN Host response to bacteria [291]

Gastric injury [102]
Bacterial infection [81]
Angiogenesis [292]
Exacerbation of asthma by bact. infection [98]

0, HA Chemokines≫cytokines/HA [120]
Recruitment of other immune cells [103]

rived cultured mast cells; GM-CSF, granulocyte monocyte-colony stimulating factor; H,
rferon; LT, leukotriene; MCP, monocyte chemoattractant protein; MIP, macrophage
te acetate; PG, prostaglandin; RMMC, rat mucosal mast cells; RPMC, rat peritoneal mast
toll-like receptor; TNF, tumor necrosis factor; VEGF, vascular endothelial growth factor.
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Fig. 4. Schematic representation showing mast cell degranulation as compared to selective mediator release. During selective release, vesicles much smaller than secretory granules
transport mediators to the cell surface for exocytosis. ER, endoplasmic reticulum; VEGF, vascular endothelial growth factor.
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Selective release of IL-6 was reported in response to bacterial
lipopolysaccharide (LPS), in the presence of the phosphatidylinositol
3-kinase (PI3-K) inhibitor wortmannin, or triggered by SCF [125–
127]. CRH induced selective VEGF release [128], and PGE2 also
induced release of VEGF [129] and MCP-1 without degranulation
[130]. Yet, PGE2 inhibited FcεRI-induced histamine release from
human lung mast cells [131]. Stromal cell-derived factor-1 alpha
(SF-1α) selectively produced IL-8 from human mast cells without
degranulation as well [132]. Activation of human cultured mast cells
by CD30 ligands led to release of the chemokines IL-8 and MCP-1
without histamine and without degranulation [133]. IL-33 induced
IL-13 release independent of IgE stimulation [134].

TLR are critical in innate and acquired immunity [135,136]. TLR
activation on mast cells leads to release of different cytokines [137].
For instance, rodent mast cell TLR-4 activation by LPS induces TNF
releasewithout degranulation. TLR-4 is also activated by extra domain
A of fibronectin to release several cytokines, including TNF, in the
same way as LPS [138]. Furthermore, LPS induces secretion of IL-5, IL-
10 and IL-13, but not GM-CSF, IL-1 or LTC4. [139,140]. In contrast,
staphylococcal peptidoglycan induces degranulation and histamine
release through TLR-2 [139,141]. TLR-2 and TLR-4 activation has a
synergistic action with antigen in enhancing cytokine production
from rodent mast cells [142]. Elsewhere, it was shown that TLR-2
activation produces IL-4, IL-6 and IL-13, but not IL-1, while LPS
produces TNF, IL-1, IL-6 and IL-13, but not IL-4 or IL-5, again without
degranulation [143].

TLR 3, 7 and 9 activation by poly-oligodeoxynucleotide and C-
phosphate-G (CpG) induces release of TNF and IL-6 without
degranulation from fetal rat skin-derived mast cells [144]. Human
mast cells produce IL-6 through viral TLR-9 activation [145], while
they produce interferon (IFN) following TLR-3 activation by double-
stranded RNA [146].

3. Regulation of mast cell activation

FcεRI-induced mast cell degranulation involves calcium-depen-
dent exocytosis, and SNAP-23 phosphorylation [147], but granule
translocation to the surface is calcium-independent [148]. Mast cell
activation by different triggers apparently engages different down-
stream pathways. FcεRI aggregation induces PI3K, ERK, JNK, NF-κB
and PKC activation, although the PKCε isozyme may be redundant
[149,150]. Phosphatase and tensin homologue (PTEN) knockdown
induces constitutive cytokine production, without degranulation,
that involves phosphorylation of AKT, p38/MAPK and JNK [151].
Secretion in response to compound 48/80 requires PLC, tyrosine
kinase, p38/MAPK and PKC [152]. In contrast, IL-1 stimulation of
selective IL-6 release is extracellular calcium-independent and
involves p38/MAPK, but only PKCθ isozyme activation [153]. CRH-
induced selective VEGF release from mast cells is also extracellular
calcium-independent, and involves only PKA and p38/MAPK
activation [128].

Degranulation in response to FcεRI-aggregation was severely
impaired in IL-2-inducible T cell kinase (IKT) −/− mice [154].
FcεRI-inducedmast cell activation in rat basophil leukemia (RBL) cells
was inhibited by the Syk-tyrosine kinase inhibitor Piceatannol [155].
Suboptimal antigen challenge of human mast cells led to FcεRI-
unresponsiveness that correlated with reduced Syk levels [156],
apparently through actin assembly that blocked degranulation [157].
However, low antigen still permitted MCP-1 release, suggesting yet
another mechanism of differential release [158].

The Src family kinase Lyn is a negative regulator of allergic mast
cell activation, but Lyn−/− mice had increased FcεRI expression,
circulatinghistamineandeosinophilia [159]. Fyndeficientmast cells could
not generate IL-6, TNF or MCP-1 during FcεRI aggregation, but IL-13
production was intact, suggesting divergent regulatory pathways [160].

Adaptor complexes such as B cell lymphoma 10–mucosal-
associated lymphoid tissue 1 (Bcl10–Malt1) permit FcεRI-dependent
IL-6 and TNF release without degranulation [161]. Mice deficient in
either Bcl10 orMALT1 proteins did not produce TNF or IL-6 upon FcεRI
signaling: yet, degranulation and LT secretion was normal [162].
Neutralization of the inhibitory receptor IRp60 (CD300a) in human
cord blood mast cells in mice led to increased mediator release [163].
In contrast, engagement of the myeloid cell inhibitory receptor CD200
in human mast cells inhibited FcεRI-induced activation [164]. Mast
cells also express the inhibitory receptors CD300 and Siglec-8, as well
as the death receptor TRAIL [165]. Two peptides derived from the
complement components C3a, C3a+ and C3a9 inhibited FcεRI-
induced degranulation and TNF release [166].

There appear to be some innate inhibitors of mast cell secretion
(Fig. 2). Chondroitin sulfate and heparin, the major constituents of
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Fig. 5. Two human cultured LAD2 mast cells, showing distribution of mitochondria
stained with MitoTracker and photographed using confocal microscopy; (A) control in
which mitochondria form a “net” around the nucleus and (B) after stimulation with SP
(2 μM for 30 min at 37 °C) in which mitochondria are distributed throughout the cell.
(Magnification: ×1000). Arrows point to the areas with the highest concentration of
MitoTracker (yellow color), thus the highest aggregation of mitochondria.
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mast cell granules, inhibit humanmast cell secretion [167]. Nitric oxide
(NO) blocks FcεRI-induced cytokine secretion through inhibition of Jun
[168]. In contrast IL-10 appears to have divergent effects depending on
the mast cell type and stimulus [169]. The natural chymase inhibitors
alpha 1-antitrypsin and secretory leukocyte protease inhibitor (SLPI)
inhibit histamine release from human cells [170].

Recent evidence indicates that mitochondria are involved in the
regulation of mast cell degranulation (Fig. 4). Mitochondrial uncou-
pling protein 2 (UCP2) inhibits mast cell activation [171]. Moreover,
our recent results indicate that mast cell degranulation requires
mitochondrial translocation to the cell surface [172] (Fig. 5).
Inhibition or downregulation of Dynamin Related Protein 1 (Drp1),
a cytoplasmic protein responsible for mitochondrial fission and
translocation, blocks mast cell degranulation [173]. The involvement
of mitochondria in mast cell regulation may also explain the ability of
certain flavonoids [174] to inhibit mast cell degranulation [175], since
quercetin was shown to accumulate in mitochondria [176].

4. Atopic dermatitis and psoriasis

Skin mast cells may have important functions as “sensors” of
environmental and emotional stress [56], possibly due to direct
activation by CRH secreted under stress, and related peptides [55].
Mast cell-related atopic dermatitis (AD) and psoriasis, are triggered or
exacerbated by stress throughmast cell activation [177,178]. Mast cell
activation in AD may also be induced by cytokines, such as TSLP. We
recently reported increased serum levels and skin gene expression of
TSLP in AD patients as compared to controls [179], in agreement with
previous studies [180,181].

Computer-induced stress enhanced allergen specific responses
with concomitant increase in plasma SP levels in patients with AD
[182]. Similarfindingswith increased plasma levels of SP, VIP andNGF,
along with a switch to a Th2 cytokine pattern, were reported in
patients with AD playing video games [183]. Skin has its own
equivalent of the HPA axis [184,185]. CRH and CRHR mRNA is
expressed in human and rodent skin [186,187] and CRH can be
secreted from dorsal root ganglia and from sympathetic ganglia
[188,189]. CRH administration in humans causes peripheral vasodila-
tion and flushing reminiscent of mast cell activation [190]. Moreover,
intradermal administration of CRH and Ucn activates skin mast cells
and increases vascular permeability in rodents [191] and humans
[192,193], through activation of CRHR-1 [56]. CRHR-1 expression was
increased in chronic urticaria [194]. Acute stress released CRH in the
skin and increased local vascular permeability [195]. Acute stress also
exacerbated skin delayed hypersensitivity reactions [196], and chronic
contact dermatitis in rats, an effect that involved significantly
increased mast cells in the dermis, and was dependent on CRHR-1
[197]. Acute restraint stress induced rat skin vascular permeability
[198], which was inhibited by a CRH receptor antagonist, and was
absent in mast cell deficient mice [191,199].

Psoriasis is also triggered or exacerbated by acute stress [105,200–
202]. We showed that psoriasis is associated with increased serum
CRH and decreased lesional skin CRHR-1 gene expression possibly due
to downregulation [203]. Psoriasis is characterized by keratinocyte
proliferation and inflammation, as well as mast cell accumulation and
activation [106,204]. Mast cells are increased in lesional psoriatic skin
[105,106]. Neuropeptides [205], especially SP [206], are involved in
the pathogenesis of psoriasis. In particular, SP reactive fibers are
localized close to mast cells [105,207]. SP can stimulate mast cells
[208,209] and contributes to inflammation [210,211]. SP-positive
nerve fibers are denser in psoriatic lesions and have an increased
number of mast cell contacts compared to normal skin [207,212,213].
SP-positive nerve fibers and mast cell contacts are also increased by
acute stress in mice [214], leading to dermal mast cell degranulation
[201,208,215]. Keratinocytes also express neurokinin (NK) 2 recep-
tors and can be stimulated by SP [216], to release IL-1 [217].
Keratinocyte proliferation is accelerated by PAF, which can be
secreted frommast cells [218], and stimulates humanmast cells [219].

Psoriasis is associated with chronic inflammation and it often co-
exists with inflammatory arthritis [220], in which IL-33 was recently
implicated [221]. IL-33 is one of the newest members of the IL-1
family of inflammatory cytokines [222], and can mediate IgE-induced
anaphylaxis in mice [223]. IL-33 also induces release of IL-6 from
mouse bone marrow-derived cultured mast cells [224], and IL-8 from
hCBMCs [225]. We showed that IL-33 augments SP-stimulated VEGF
release from human mast cells and IL-33 gene expression is increased
in lesional skin from patients with psoriasis [226]. Mast cells may,
therefore, be involved in the pathogenesis of psoriasis and other
inflammatory skin diseases.

5. Multiple sclerosis

Functional mast cell–neuron interactions occur in the brain
[227,228] and could mediate neuroinflammation [20]. In the brain,
mast cells are found in the leptomeninges [228,229], the choroid
plexus, thalamus and hypothalamus, especially the median eminence
[230,231], where most of histamine derives from mast cells [232–
235]. We had proposed that mast cells can act as “the immune gate to
the brain” [107], and we later showed that mast cells regulate BBB
permeability [236,237]. BBB breakdown [238] precedes any
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pathological or clinical signs of MS [239–241], as shown by MRI-
gadolinium studies and trans-BBB leakage of albumin [242]. Mast cells
have been implicated in multiple sclerosis (MS), a demyelinating
condition involving brain and MS plaque infiltration [243] by
lymphocytes and activated mast cells [244,245]. Gene array analysis
of MS plaques showed overexpression of genes for FcεRI, the
histamine-1 (H1) receptor and tryptase, all of which are associated
with mast cells [246,247]. A recent paper reported that experimental
autoimmune encephalomyelitis (EAE) development depends on H1

receptor activation [248]. Mast cells are located close to the cerebral
microvasculature and do not express FcεRI protein under normal
conditions [249]. This is not surprising as the brain is not known to
develop allergic reactions since IgE does not cross the blood–brain-
barrier (BBB). Brain mast cells also do not normally express their
surface growth factor (c-kit) receptor [250], but do so during EAE
[251]. We first showed that mast cells migrate into the brain from the
meninges, and it was later shown that they can also enter the CNS
from blood [252]. Mast cell-derived products can enter neurons, a
process termed “transgranulation”, indicating a novel form of brain–
immune system communication [253]. We further hypothesized that
perivascular brain mast cells could come in contact with circulating T
cells and not only allow them to enter the BBB, but also activate them
[80]. TNF can be released from rat brain mast cells [254], and is
involved in both brain inflammation [255,256] and increased vascular
permeability [257]. Mast cell tryptase is elevated in the CSF of MS
patients [258] and can activate peripheral mononuclear cells to
secrete TNF and IL-6 [259], as well as stimulate PAR that can lead to
microvascular leakage and widespread inflammation [260]. It was
recently reported that meningeal mast cells promote T cell infiltration
in the CNS by disrupting BBB integrity through TNF [261]. However,
this paper did not include any of earlier publications discussed above
and did not consider the possibility that lack of TNF may eventually
worsen EAE [262]. The above findings imply that mast cells may be
able to secrete both prestored and de novo synthesized TNF [263,264]
with different biological actions.

The role of CD4+ T cells is well-documented in MS, but this CD4-
Th1 model has recently been questioned [265], because increasing
evidence also implicates Th2 processes typically associated with
allergic reactions [266,267]. Some studies reported the inability of
mast cell deficient mice to fully develop EAE, but suggested that
reduced T cell activation may also be involved [268,269]. Mast cell
contact with activated T cells leads to secretion of matrix metallo-
proteinase (MMP)-9 and IL-6 from humanmast cells [270]. Moreover,
mast cells can promote IgE-dependent and T cell-independent
proliferation and activation through TNF release [77,78]. We showed
that mast cells superstimulate activated T cells, an action which is
further increased when mast cells are activated by myelin basic
protein (MBP) and is partially dependent on TNF [79,80]. MBP could
induce homogeneic mast cell activation and brain demyelination
[271]. Moreover, virally-induced encephalomyelitis could not develop
in W/Wv mast cell deficient mice, and EAE was attenuated and
delayed in these mice [272].

Mast cell-derived mediators can increase BBB permeability [273].
Selective release of IL-6 could have profound effects on brain function
[274] and could activate the HPA axis [275]. Selective release of VEGF,
an isoform of which is particularly vasodilatory [43,276], could lead to
BBB disruption [277]. Mast cells are localized close to CRH-positive
neurons in the median eminence [278] and express functional CRH
receptors [44]. Activation of hypothalamicmast cells can stimulate the
HPA axis [279–281], through histamine, which regulates the hypo-
thalamus, and can also increase hypothalamic CRH mRNA expres-
sion [282]. Moreover, human mast cells can synthesize and secrete
large amounts of CRH [283], as well as IL-1 and IL-6 which are
independent activators of the HPA axis [284].

The effect of stress and CRH on mast cell activation and BBB
permeability may help explain some of the clinical findings in MS
patients. Acute stress worsens the symptoms of MS, and the
appearance of new MRI lesions has been repeatedly shown to be
precipitated by psychological stress [285–288]. In one study in
Denmark, parents who had unexpectedly lost a young child had a
significantly increased risk of MS, compared to other bereaved parents
[289]. Meta-analysis of 14 prospective studies showed a significantly
increased risk of MS exacerbations after stressful events [290]. A
review of the effect of stress on MS proposed that it may be due to
glucocorticoid-insensitive immune cells [291]. Another study argued
that stress could not affect MS because the function of peripheral
blood leukocytes in MS patients was apparently unaffected by stress
[292]. However, such findings may not be relevant as stress may
predominantly affect mast cells and T cells, but not peripheral
leukocytes. Release of CRH and cytokines outside the brain may be
more relevant instead. For instance, examination-stress dramatically
increased serum TNF levels in medical student volunteers [293], and
restraint stress inducedmast cell-dependent increase in mouse serum
IL-6 [294]. Rat brain mast cells were activated by acute stress, and
led to CSF elevation of rat mast cell protease I [278], the equivalent of
tryptase in humans. These effects were abolished by polyclonal
antiserum to CRH and by the CRHR-1 antagonist Antalarmin
[228,278]. A short period of restraint [295] or maternal deprivation
stress [296] increased the severity of EAE. Acute restraint stress also
shortened the time required for the development of EAE in mice
[295]. Moreover, EAE was characterized by decreased clinical
disability and brain infiltration by immune cells in CRH−/− mice
as compared to normal controls [297]. Restraint stress was also
reported to increase mortality rates and lead to higher CNS viral load
during Theiler's virus infection [298]. Stressed mice had increased
inflammatory spinal cord lesions and developed autoimmune
antibodies to MBP [299]. Mast cell activation was shown to occur
in response to isolation stress [300], restraint stress [278], subordi-
nation stress [301], and during courtship following isolation of male
doves [302].

Mast cells could, therefore, participate in the pathogenesis of MS in
many different ways: they could (A) be stimulated to release
cytokines/chemokines selectively inducing T cell/macrophage re-
cruitment and activation; (B) present myelin antigens to T cells; (C)
disrupt the BBB and permit entry of active T cells that are sensitized to
MBP; (D) damage myelin and release fragments that could stimulate
secretion of tryptase, which may in turn enhance demyelination and
induce further inflammation through stimulation of PAR. As a result,
mast cells were considered as a possible therapeutic target for MS
[303]. It is of interest that flavonoids [174] known to inhibit mast cell
secretion [175] have also been shown to inhibit macrophage myelin
phagocytosis [304], and EAE [305,306]. The flavone luteolin, which is
structurally related to quercetin, was also a strong inhibitor of human
autoimmune T cells [307]. Quercetin and luteolin also inhibit IL-6
release from microglia [308] and induce an anti-inflammatory
phenotype [309]. Luteolin is neuroprotective [309] and is closely
related to 7,8-dihydroxyflavone recently shown tomimic the action of
BDNF [310]. We showed that luteolin can inhibit mast cell activation
and mast cell-dependent superstimulation of activated T cells with or
without stimulation by MBP [80]. Luteolin can also inhibit activation
of peripheral lymphocytes from MS patients [311], and it was,
therefore, proposed as adjuvant therapy for MS [312].

6. Conclusion

Mast cells clearly participate in the induction and/or propagation
of certain inflammatory diseases, through selective release of
mediators. The pharmacologic inhibition of this process would,
therefore, have clear therapeutic potential. Luteolin formulations,
alone or together with drugs that can selectively inhibit the release of
pro-inflammatory mediators hold promise for the treatment of skin
and brain inflammatory diseases.
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